large single copy
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 20)

H-INDEX

8
(FIVE YEARS 2)

2022 ◽  
Vol 12 ◽  
Author(s):  
Qian Yang ◽  
Gao-Fei Fu ◽  
Zhi-Qiang Wu ◽  
Li Li ◽  
Jian-Li Zhao ◽  
...  

Chloroplasts are critical to plant survival and adaptive evolution. The comparison of chloroplast genomes could provide insight into the adaptive evolution of closely related species. To identify potential adaptive evolution in the chloroplast genomes of four montane Zingiberaceae taxa (Cautleya, Roscoea, Rhynchanthus, and Pommereschea) that inhabit distinct habitats in the mountains of Yunnan, China, the nucleotide sequences of 13 complete chloroplast genomes, including five newly sequenced species, were characterized and compared. The five newly sequenced chloroplast genomes (162,878–163,831 bp) possessed typical quadripartite structures, which included a large single copy (LSC) region, a small single copy (SSC) region, and a pair of inverted repeat regions (IRa and IRb), and even though the structure was highly conserved among the 13 taxa, one of the rps19 genes was absent in Cautleya, possibly due to expansion of the LSC region. Positive selection of rpoA and ycf2 suggests that these montane species have experienced adaptive evolution to habitats with different sunlight intensities and that adaptation related to the chloroplast genome has played an important role in the evolution of Zingiberaceae taxa.


Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 113
Author(s):  
Carla L. Saldaña ◽  
Pedro Rodriguez-Grados ◽  
Julio C. Chávez-Galarza ◽  
Shefferson Feijoo ◽  
Juan Carlos Guerrero-Abad ◽  
...  

Capirona (Calycophyllum spruceanum Benth.) belongs to subfamily Ixoroideae, one of the major lineages in the Rubiaceae family, and is an important timber tree. It originated in the Amazon Basin and has widespread distribution in Bolivia, Peru, Colombia, and Brazil. In this study, we obtained the first complete chloroplast (cp) genome of capirona from the department of Madre de Dios located in the Peruvian Amazon. High-quality genomic DNA was used to construct libraries. Pair-end clean reads were obtained by PE 150 library and the Illumina HiSeq 2500 platform. The complete cp genome of C. spruceanum has a 154,480 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (84,813 bp) and a small single-copy (SSC) region (18,101 bp), separated by two inverted repeat (IR) regions (25,783 bp). The annotation of C. spruceanum cp genome predicted 87 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, 37 transfer RNA (tRNA) genes, and one pseudogene. A total of 41 simple sequence repeats (SSR) of this cp genome were divided into mononucleotides (29), dinucleotides (5), trinucleotides (3), and tetranucleotides (4). Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with the other six Ixoroideae species revealed that the small single copy and large single copy regions showed more divergence than inverted regions. Finally, phylogenetic analyses resolved that C. spruceanum is a sister species to Emmenopterys henryi and confirms its position within the subfamily Ixoroideae. This study reports for the first time the genome organization, gene content, and structural features of the chloroplast genome of C. spruceanum, providing valuable information for genetic and evolutionary studies in the genus Calycophyllum and beyond.


2021 ◽  
Vol 7 (11) ◽  
Author(s):  
Linda van der Graaf-van Bloois ◽  
Jaap A. Wagenaar ◽  
Aldert L. Zomer

Antimicrobial-resistance (AMR) genes in bacteria are often carried on plasmids and these plasmids can transfer AMR genes between bacteria. For molecular epidemiology purposes and risk assessment, it is important to know whether the genes are located on highly transferable plasmids or in the more stable chromosomes. However, draft whole-genome sequences are fragmented, making it difficult to discriminate plasmid and chromosomal contigs. Current methods that predict plasmid sequences from draft genome sequences rely on single features, like k-mer composition, circularity of the DNA molecule, copy number or sequence identity to plasmid replication genes, all of which have their drawbacks, especially when faced with large single-copy plasmids, which often carry resistance genes. With our newly developed prediction tool RFPlasmid, we use a combination of multiple features, including k-mer composition and databases with plasmid and chromosomal marker proteins, to predict whether the likely source of a contig is plasmid or chromosomal. The tool RFPlasmid supports models for 17 different bacterial taxa, including Campylobacter , Escherichia coli and Salmonella , and has a taxon agnostic model for metagenomic assemblies or unsupported organisms. RFPlasmid is available both as a standalone tool and via a web interface.


Author(s):  
Carla L. Saldaña ◽  
Pedro Rodriguez-Grados ◽  
Julio C. Chávez-Galarza ◽  
Shefferson Feijoo ◽  
Juan Carlos Guerrero Abad ◽  
...  

Capirona (Calycophyllum spruceanum Benth.) belongs to subfamily Ixoroideae, one of de major lineages in the Rubiaceae family, and is an important timber tree, with origin in the Amazon Basin and has widespread distribution in Bolivia, Peru, Colombia, and Brazil. In this study, we obtained the first complete chloroplast (cp) genome of capirona from department of Madre de Dios located in the Peruvian Amazon. High-quality genomic DNA was used to construct librar-ies. Pair-end clean reads were obtained by PE 150 library and the Illumina HiSeq 2500 platform. The complete cp genome of C. spruceanum has a 154,480 bp in length with typical quadripartite structure, containing a large single copy (LSC) region (84,813 bp) and a small single-copy (SSC) region (18,101 bp), separated by two inverted repeat (IR) regions (25,783 bp). The annotation of C. spruceanum cp genome predicted 87 protein-coding genes (CDS), 8 ribosomal RNA (rRNA) genes, 37 transfer RNA (tRNA) genes and 01 pseudogene. A total of 41 simple sequence repeats (SSR) of this cp genome were divided into mononucleotides (29), dinucleotides (5), trinucleotides (3), and tetranucleotide (4). Most of these repeats were distributed in the noncoding regions. Whole chloroplast genome comparison with the other six Ixoroideae species revealed that the small single copy and large single copy regions showed more divergence than invert regions. Finally, phylogenetic analysis resolved that C. spruceanum is a sister species to Emmenopterys henryi, and confirms its position within the subfamily Ixoroideae. This study reports for the first time the genome organization, gene content, and structural features of the chloroplast genome of C. spruceanum, providing valuable information for genetic and evolutionary studies in the genus Calycophyllum and beyond.


2021 ◽  
Vol 22 (20) ◽  
pp. 11139
Author(s):  
Ewa Górecka ◽  
Romain Gastineau ◽  
Nikolai A. Davidovich ◽  
Olga I. Davidovich ◽  
Matt P. Ashworth ◽  
...  

We provide for the first time the complete plastid and mitochondrial genomes of a monoraphid diatom: Schizostauron trachyderma. The mitogenome is 41,957 bp in size and displays two group II introns in the cox1 gene. The 187,029 bp plastid genome features the typical quadripartite architecture of diatom genomes. It contains a group II intron in the petB gene that overlaps the large single-copy and the inverted repeat region. There is also a group IB4 intron encoding a putative LAGLIDADG homing endonuclease in the rnl gene. The multigene phylogenies conducted provide more evidence of the proximity between S. trachyderma and fistula-bearing species of biraphid diatoms.


2021 ◽  
Vol 51 (3) ◽  
pp. 337-344
Author(s):  
Yongsung KIM ◽  
Hong XI ◽  
Jongsun PARK

The chloroplast genome of Limonium tetragonum (Thunb.) Bullock, a halophytic species, was sequenced to understand genetic differences based on its geographical distribution. The cp genome of L. tetragonum was 154,689 bp long (GC ratio is 37.0%) and has four subregions: 84,572 bp of large single-copy (35.3%) and 12,813 bp of small singlecopy (31.5%) regions were separated by 28,562 bp of inverted repeat (40.9%) regions. It contained 128 genes (83 proteincoding genes, eight rRNAs, and 37 tRNAs). Thirty-five single-nucleotide polymorphisms and 33 INDEL regions (88 bp in length) were identified. Maximum-likelihood and Bayesian inference phylogenetic trees showed that L. tetragonum formed a sister group with L. aureum, which is incongruent with certain previous studies, including a phylogenetic analysis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kyu Tae Park ◽  
SeonJoo Park

Hepatica is a small genus of Ranunculaceae with medicinal and horticultural value. We characterized nine complete chloroplast (cp) genomes of Hepatica, which ranged from 159,549 to 161,081 bp in length and had a typical quadripartite structure with a large single-copy region (LSC; 80,270–81,249 bp), a small single-copy region (SSC; 17,029–17,838 bp), and two copies of inverted repeat (IR; 31,008–31,100 bp). The cp genomes of Hepatica possess 76 protein-coding genes (PCGs), 29 tRNAs, and four rRNA genes. Comparative analyses revealed a conserved ca. 5-kb IR expansion in Hepatica and other Anemoneae; moreover, multiple inversion events occurred in Hepatica and its relatives. Analyses of selection pressure (dN/dS) showed that most of the PCGs are highly conserved except for rpl20 and rpl22 in Hepatica falconeri, Hepatica americana, and Hepatica acutiloba. Two genes (rps16 and infA) were identified as pseudogenes in Hepatica. In contrast, rpl32 gene was completely lost. The phylogenetic analyses based on 76 PCGs resolved the phylogeny of Hepatica and its related genera. Non-monophyly of Anemone s.l. indicates that Hepatica should be reclassified as an independent genus. In addition, Hepatica nobilis var. japonica is not closely related to H. nobilis.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Xiu-Lian Cai ◽  
Jacob B. Landis ◽  
Hong-Xin Wang ◽  
Jian-Hua Wang ◽  
Zhi-Xin Zhu ◽  
...  

Abstract Background The Styracaceae are a woody, dicotyledonous family containing 12 genera and an estimated 160 species. Recent studies have shown that Styrax and Sinojackia are monophyletic, Alniphyllum and Bruinsmia cluster into a clade with an approximately 20-kb inversion in the Large Single-Copy (LSC) region. Halesia and Pterostyrax are not supported as monophyletic, while Melliodendron and Changiostyrax always form sister clades. Perkinsiodendron and Changiostyrax are newly established genera of Styracaceae. However, the phylogenetic relationship of Styracaceae at the generic level needs further research. Results We collected 28 complete plastomes of Styracaceae, including 12 sequences newly reported here and 16 publicly available sequences, comprising 11 of the 12 genera of Styracaceae. All species possessed the typical quadripartite structure of angiosperm plastomes, with sequence differences being minor, except for a large 20-kb (14 genes) inversion found in Alniphyllum and Bruinsmia. Seven coding sequences (rps4, rpl23, accD, rpoC1, psaA, rpoA and ndhH) were identified to possess positively selected sites. Phylogenetic reconstructions based on seven data sets (i.e., LSC, SSC, IR, Coding, Non-coding, combination of LSC + SSC and concatenation of LSC + SSC + one IR) produced similar topologies. In our analyses, all genera were strongly supported as monophyletic. Styrax was sister to the remaining genera. Alniphyllum and Bruinsmia form a clade. Halesia diptera does not cluster with Perkinsiodendron, while Perkinsiodendron and Rehderodendron form a clade. Changiostyrax is sister to a clade of Pterostyrax and Sinojackia. Conclusion Overall, our results demonstrate the power of plastid phylogenomics in improving estimates of phylogenetic relationships among genera. This study also provides insight into plastome evolution across Styracaceae.


2021 ◽  
Author(s):  
Keke Xia ◽  
Ding-Kun Liu ◽  
Jie-Yu Wang

Phalaenopsis wilsonii is a typical deciduous species in the horticulturally well-known genus, Phalaenopsis. Tshi species is belonging to the section Aphyllae in moth orchid, and is endemic to South China. Although the Aphyllae section display the deciduous feature that is unique in this genus, their genetic information is still insufficient and limited them as breeding parent in moth orchid. Here, we reported and characterized the complete chloroplast genome for Phalaenopsis wilsonii. We found the total size of the chloroplast genome was 145,373 bp, constituting of a large single copy (LSC) region (84,996 bp), a small single-copy region (10,668 bp) and two inverted repeats (IRs) regions (24,855 bp). Based on homologous searching on database, we annotated 76 protein-coding genes, 38 tRNA, and 8 rRNA. The phylogenetic reconstruction revealed that P. wilsonii show the closest relationship with P. lowii within subgenus Parishianae.


Author(s):  
Ming Zhu ◽  
Peipei Feng ◽  
Jingyao Ping ◽  
Jinye Li ◽  
Ying-juan Su ◽  
...  

Recent taxonomic and molecular phylogenetic studies have shown that Gymnosphaera should be recognized as an independent taxonomic unit at the genus level under the family Cyatheaceae. In this study, the complete chloroplast genomes of the eight species of Cyatheaceae were sequenced, and their phylogenetic relationships were reconstructed using the maximum likelihood, Bayesian inference, maximum parsimony, and neighbor-joining methods, and the characteristics of their simple sequence repeats (SSRs) were compared and analyzed for the first time. The results showed that when Cyatheaceae was divided into three genera,the number, relative abundance, relative density, and GC content of all SSRs and of SSRs of certain unit lengths in the chloroplast genomes of the eight species of Cyatheaceae were genus specific in the whole chloroplast genomes and in their different regions (large single-copy, small single-copy, inverted repeat, intergenic spacer, intron, rRNA gene, and coding sequence regions). The SSRs overall and the single-nucleotide SSRs had significant differences in number, relative abundance, relative density, and GC content between the chloroplast genomes, their intergenic regions, and large single-copy regions. When Cyatheaceae was divided into two genera, only the difference in GC content was significant. Therefore, our results support the restoration of the hierarchical status of Gymnosphaera. This study provides an important basis for the identification of the phylogenetic relationship of Cyatheaceae plants.


Sign in / Sign up

Export Citation Format

Share Document