scholarly journals Melatonin Enhanced the Tolerance of Arabidopsis thaliana to High Light Through Improving Anti-oxidative System and Photosynthesis

2021 ◽  
Vol 12 ◽  
Author(s):  
Si-Jia Yang ◽  
Bo Huang ◽  
Yu-Qing Zhao ◽  
Di Hu ◽  
Tao Chen ◽  
...  

Land plants live in a crisis-filled environment and the fluctuation of sunlight intensity often causes damage to photosynthetic apparatus. Phyto-melatonin is an effective bioactive molecule that helps plants to resist various biotic and abiotic stresses. In order to explore the role of melatonin under high light stress, we investigated the effects of melatonin on anti-oxidative system and photosynthesis of Arabidopsis thaliana under high light. Results showed that exogenous melatonin increased photosynthetic rate and protected photosynthetic proteins under high light. This was mainly owing to the fact that exogenous melatonin effectively decreased the accumulation of reactive oxygen species and protected integrity of membrane and photosynthetic pigments, and reduced cell death. Taken together, our study promoted more comprehensive understanding in the protective effects of exogenous melatonin under high light.

2017 ◽  
Vol 114 (18) ◽  
pp. 4828-4832 ◽  
Author(s):  
Lijin Tian ◽  
Pengqi Xu ◽  
Volha U. Chukhutsina ◽  
Alfred R. Holzwarth ◽  
Roberta Croce

Nonphotochemical quenching (NPQ) is the process that protects the photosynthetic apparatus of plants and algae from photodamage by dissipating as heat the energy absorbed in excess. Studies on NPQ have almost exclusively focused on photosystem II (PSII), as it was believed that NPQ does not occur in photosystem I (PSI). Recently, Ballottari et al. [Ballottari M, et al. (2014) Proc Natl Acad Sci USA 111:E2431–E2438], analyzing PSI particles isolated from an Arabidopsis thaliana mutant that accumulates zeaxanthin constitutively, have reported that this xanthophyll can efficiently induce chlorophyll fluorescence quenching in PSI. In this work, we have checked the biological relevance of this finding by analyzing WT plants under high-light stress conditions. By performing time-resolved fluorescence measurements on PSI isolated from Arabidopsis thaliana WT in dark-adapted and high-light–stressed (NPQ) states, we find that the fluorescence kinetics of both PSI are nearly identical. To validate this result in vivo, we have measured the kinetics of PSI directly on leaves in unquenched and NPQ states; again, no differences were observed. It is concluded that PSI does not undergo NPQ in biologically relevant conditions in Arabidopsis thaliana. The possible role of zeaxanthin in PSI photoprotection is discussed.


Author(s):  
Vasil Atanasov ◽  
Lisa Fürtauer ◽  
Thomas Nägele

Diurnal and seasonal changes of abiotic environmental factors shape plant performance and distribution. Changes of growth temperature and light intensity may vary significantly on a diurnal, but also on a weekly or seasonal scale. Hence, acclimation to a changing temperature and light regime is essential for plant survival and propagation. In the present study, we analyzed photosynthetic CO2 assimilation and metabolic regulation of the central carbohydrate metabolism in two natural accessions of Arabidopsis thaliana originating from Russia and south Italy during exposure to heat and a combination of heat and high light. Our findings indicate that it is hardly possible to predict photosynthetic capacities to fix CO2 under combined stress from single stress experiments. Further, capacities of hexose phosphorylation were found to be significantly lower in the Italian than in the Russian accession which could explain an inverted sucrose-to-hexose ratio. Together with the finding of significantly stronger accumulation of anthocyanins under heat/high light these observations indicate a central role of hexokinase activity in stabilization of photosynthetic capacities within a changing environment.


2001 ◽  
Vol 56 (5-6) ◽  
pp. 369-374 ◽  
Author(s):  
Maya Velitchkova ◽  
Antoaneta Popova ◽  
Tzvetelina Markova

The relationship between thylakoid membrane fluidity and the process of photoinhibition at room and low (4 °C) temperature was investigated. Two different membrane perturbing agents - cholesterol and benzylalcohol were applied to manipulate the fluidity of isolated pea thylakoids. The photochemical activity of photosystem I (PSI) and photosystem II (PSII), polarographically determined, were measured at high light intensity for different time of illumination at both temperatures. The exposure of cholesterol- and benzylalcohol-treated thylakoid membranes to high light intensities resulted in inhibition of both studied photochemical activities, being more pronounced for PSII compared to PSI. Time dependencies of inhibition of PSI and PSII electron transport rates for untreated and membranes with altered fluidity were determined at 20 °C and 4 °C. The effect is more pronounced for PSII activity during low-temperature photoinhibition. The data are discussed in terms of the determining role of physico-chemical properties of thylakoid membranes for the response of photosynthetic apparatus to light stress.


Plant Biology ◽  
2013 ◽  
Vol 15 (6) ◽  
pp. 1033-1039 ◽  
Author(s):  
S. Mou ◽  
X. Zhang ◽  
M. Dong ◽  
X. Fan ◽  
J. Xu ◽  
...  

2016 ◽  
Vol 13 (10) ◽  
pp. 7189-7198
Author(s):  
Shuang Gang ◽  
Yufeng Liu ◽  
Tao Lu ◽  
Mingfang Qi ◽  
Xiaoxi Guan ◽  
...  

The present study investigated the role of abscisic acid (ABA) application in photosynthesis, photosystems I and II (PSI and PSII), antioxidant system and ABA-related genes expression under sub-high temperature and high light (STHL) stress. STHL treatment led to an irreversible reduction in the photosynthetic rate (Pn), damaged PSII firstly at three hours, and then inhibited RuBPCase activity at seven hours, at last injured PSI after eleven hours. During 11 hours STHL stress, exogenous ABA can alleviate the degree of Pn decreasing, improve the activity of RuBPCase, protect PSII to photoinhibition, and promote the ability of reactive oxygen removal. When severe stress occured, exogenous ABA has certain effect, but can not ease photoinhibition and photodamage. In addition, exogenous ABA effected significantly on genes of upstream regulatory ABA biosynthesis key enzymes and downstream response MYB transcription factors.


2014 ◽  
Vol 81 ◽  
pp. 44-53 ◽  
Author(s):  
Abhaypratap Vishwakarma ◽  
Leena Bashyam ◽  
Balasubramanian Senthilkumaran ◽  
Renate Scheibe ◽  
Kollipara Padmasree

Sign in / Sign up

Export Citation Format

Share Document