scholarly journals Physiological Responses of Robinia pseudoacacia and Quercus acutissima Seedlings to Repeated Drought-Rewatering Under Different Planting Methods

2021 ◽  
Vol 12 ◽  
Author(s):  
Xiao Liu ◽  
Qinyuan Zhang ◽  
Meixia Song ◽  
Ning Wang ◽  
Peixian Fan ◽  
...  

Changing precipitation patterns have aggravated the existing uneven water distribution, leading to the alternation of drought and rewatering. Based on this variation, we studied species, namely, Robinia pseudoacacia and Quercus acutissima, with different root forms and water regulation strategy to determine physiological responses to repeated drought-rewatering under different planting methods. Growth, physiological, and hydraulic traits were measured using pure and mixed planting seedlings that were subjected to drought, repeated drought-rewatering (i.e., treatments), and well-irrigated seedlings (i.e., control). Drought had negative effects on plant functional traits, such as significantly decreased xylem water potential (Ψmd), net photosynthetic rate (AP), and then height and basal diameter growth were slowed down, while plant species could form stress imprint and adopt compensatory mechanism after repeated drought-rewatering. Mixed planting of the two tree species prolonged the desiccation time during drought, slowed down Ψmd and AP decreasing, and after rewatering, plant functional traits could recover faster than pure planting. Our results demonstrate that repeated drought-rewatering could make plant species form stress imprint and adopt compensatory mechanism, while mixed planting could weaken the inhibition of drought and finally improve the overall drought resistance; this mechanism may provide a theoretical basis for afforestation and vegetation restoration in the warm temperate zone under rising uneven spatiotemporal water distribution.

2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Wang ◽  
Shuguang Jian ◽  
Hai Ren ◽  
Junhua Yan ◽  
Nan Liu

Plant functional traits are fundamental to the understanding of plant adaptations and distributions. Recently, scientists proposed a trait-based species selection theory to support the selection of suitable plant species to restore the degraded ecosystems, to prevent the invasive exotic species and to manage the sustainable ecosystems. Based on this theory, in a previous study, we developed a species screening model and successfully applied it to a project where plant species were selected for restoring a tropical coral island. However, during this process we learned that a software platform is necessary to automate the selection process because it can flexible to assist users. Here, we developed a generalized software platform called the “Restoration Plant Species Selection (RPSS) Platform.” This flexible software is designed to assist users in selecting plant species for particular purposes (e.g., restore the degraded ecosystems and others). It is written in R language and integrated with external R packages, including the packages that computing similarity indexes, providing graphic outputs, and offering web functions. The software has a web-based graphical user interface that allows users to execute required functions via checkboxes and buttons. The platform has cross-platform functionality, which means that it can run on all common operating systems (e.g., Windows, Linux, macOS, and others). We also illustrate a successful case study in which the software platform was used to select suitable plant species for restoration purpose. The objective of this paper is to introduce the newly developed software platform RPSS and to provide useful guidances on using it for various applications. At this step, we also realized that the software platform should be constantly updated (e.g., add new features) in the future. Based on the existing successful application and the possible updates, we believe that our RPSS software platform will have broader applications in the future.


2020 ◽  
Vol 181 (2) ◽  
pp. 256-265 ◽  
Author(s):  
Ariel K. Pezner ◽  
Alexandria L. Pivovaroff ◽  
Wu Sun ◽  
M. Rasoul Sharifi ◽  
Philip W. Rundel ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 3472
Author(s):  
Ahmad Azeem ◽  
Mai Wenxuan ◽  
Tian Changyan ◽  
Qaiser Javed ◽  
Adeel Abbas

Nitrogen (N) is the important nutrition that regulatory plant functioning and environmental stability of invasive plant species under flooding (F) conditions. Little information clarifies the role of nitrogen enrichment and flooding on the invasive plant functional traits and competition with native competitors. Plant functional traits play an essential role in the successful growth of plants under different environmental conditions. Therefore, greenhouse pots experiment was conducted with invasive plant species (Wedelia trilobata, WT), and its native competitor (Wedelia chinensis, WC) in monoculture and cocultivation culture, along with flooding and nitrogen enrichment conditions. Considering the impact of flooding (F) and nitrogen (N) on an individual basis, the plant physiological traits of WC were nonsignificant compared to that of WT. However, in the combination of flooding × additional nitrogen (F.N, F.2N), plant physiological traits of WT were comparatively higher than those of WC, especially in cocultivation. In flooding × additional nitrogen (F.N and F.2N), better phenotypic plasticity at different plant traits makes WT more dominant in resource competition over WC. In conclusion, improved functional traits of WT under nitrogen enrichment and flooding conditions enhanced its competitiveness over native competitors.


Author(s):  
Ruiyu Fu ◽  
Zhonghua Zhang ◽  
Cong Hu ◽  
Xingbing Peng ◽  
Shaonuan Lu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document