scholarly journals Activating the Right Hemisphere Through Left-Hand Muscle Contraction Improves Novel Metaphor Comprehension

2021 ◽  
Vol 12 ◽  
Author(s):  
Tala Noufi ◽  
Maor Zeev-Wolf

The neurotypical brain is characterized by left hemisphere lateralization for most language processing. However, the right hemisphere plays a crucial part when it is required to bring together seemingly unrelated concepts into meaningful expressions, such as in the case of novel metaphors (unfamiliar figurative expressions). The aim of the current study was to test whether it is possible to enhance novel metaphor comprehension through an easy, efficient, and non-invasive method – intentional contraction of the left hand’s muscles, to activate the motor and sensory areas in the contralateral hemisphere. One hundred eighteen neurotypical participants were asked to perform a semantic judgment task involving two-word expressions of four types: literal, conventional metaphors, novel metaphors, or unrelated, while squeezing a rubber ball with their right hand, left hand, or not at all. Results demonstrated that left-hand contraction improved novel metaphor comprehension, as participants were more accurate and quicker in judging them to be meaningful. The findings of the present work provide a simple and efficient method for boosting right hemisphere activation, which can be used to improve metaphoric language comprehension. This method can aid several populations in which right hemisphere function is not fully established, and who struggle with processing figurative language, such as adolescents and individuals on the autistic spectrum.

2017 ◽  
Vol 21 (1) ◽  
pp. 266-286
Author(s):  
Katarzyna Konopka ◽  
Ewa Pisula ◽  
Emilia Łojek ◽  
Piotr Fudalej

Abstract The level of metaphor comprehension and interpretation was investigated in a sample of children with cleft palate (CP), aged 6;0-8;11, and healthy controls matched with age, sex, socioeconomic status, and IQ level. The Wechsler Intelligence Scale for Children - Revised (WISC-R) was used to evaluate the children’s cognitive functioning, and the metaphor tests from a modified version of the Right Hemisphere Language Battery - Polish version (RHLB-PL) were used to assess comprehension of figurative language. The CP and control groups differed significantly in Verbal IQ values and in performance in the Vocabulary test, Comprehension test, Picture Metaphor Explanation test, and Written Metaphor Explanation test. In both metaphor explanation tests, children with CP gave fewer responses than controls. The results suggest no differences between children with CP and controls in understanding figurative language, although they point to weaker performance in communicating responses and producing statements in the CP children group.


2008 ◽  
Vol 20 (1) ◽  
pp. 170-181 ◽  
Author(s):  
Gorana Pobric ◽  
Nira Mashal ◽  
Miriam Faust ◽  
Michal Lavidor

Previous research suggests that the right hemisphere (RH) may contribute uniquely to the processing of metaphoric language. However, causal relationships between local brain activity in the RH and metaphors comprehension were never established. In addition, most studies have focused on familiar metaphoric expressions which might be processed similarly to any conventional word combination. The present study was designed to overcome these two problems by employing repetitive transcranial magnetic stimulation (rTMS) to examine the role of the RH in processing novel metaphoric expressions taken from poetry. Right-handed participants were presented with four types of word pairs, literal, conventional metaphoric and novel metaphoric expressions, and unrelated word pairs, and were asked to perform a semantic judgment task. rTMS of the right posterior superior temporal sulcus disrupted processing of novel but not conventional metaphors, whereas rTMS over the left inferior frontal gyrus selectively impaired processing of literal word pairs and conventional but not novel metaphors (Experiment 1). In a further experiment, we showed that these effects were due to right-left asymmetries rather than posterior-anterior differences (Experiment 2). This is the first demonstration of TMS-induced impairment in processing novel metaphoric expressions, and as such, confirms the specialization of the RH in the activation of a broader range of related meanings than the left hemisphere, including novel, nonsalient meanings. The findings thus suggest that the RH may be critically involved in at least one important component of novel metaphor comprehension, the integration of the individual meanings of two seemingly unrelated concepts into a meaningful metaphoric expression.


Author(s):  
Brigitte Stemmer

This essay summarizes the findings of studies investigating aspects of linguistic pragmatic behaviour and the brain correlates underlying such behaviour. Although pragmatics is a large field, most brain-oriented studies have focused on specific aspects of linguistic pragmatics such as structural discourse and figurative language. Research indicates that linguistic pragmatic behaviour relies on brain correlates that are routinely activated during word and sentence processing (the default language network). Although no agreement has yet been reached concerning questions such as whether these correlates are qualitatively and/or quantitatively different, whether additional brain areas/networks are implicated, and, if so, what these are, some concrete suggestions have emerged. At a more general level, there is consensus that the classical standard pragmatic model is not supported by most neuroimaging studies and that the right-hemisphere hypothesis on figurative language processing needs revision. The essay ends with some speculations on interpreting pragmatic behaviour within a microgenetic framework.


2018 ◽  
Vol 19 (1) ◽  
pp. 81-87
Author(s):  
Vanja Kljajevic ◽  
Milenka Vranes-Grujicic ◽  
Katica Raskovic

Abstract Studying how spatial information interacts with figurative language processing in right-hemisphere (RH) stroke patients is a relatively neglected area of research. The goal of the present case study was to establish whether an ischemic lesion in the right temporo-parietal region causing spatial neglect would affect comprehension of sentence-level spatial metaphors, since some evidence indicates the crucial role of the RH in metaphor processing. The patient under study showed some degree of cognitive impairment (e.g., in spatial and verbal working memory, executive control, visuo-spatial matching skills). However, his comprehension of spatial metaphors was preserved. This case illustrates that RH damage does not necessarily affect comprehension of sentence-level spatial metaphors.


2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Maria Luisa Lorusso ◽  
Michele Burigo ◽  
Virginia Borsa ◽  
Massimo Molteni

Forty native Italian children (age 6–15) performed a sentence plausibility judgment task. ERP recordings were available for 12 children with specific language impairment (SLI), 11 children with nonverbal learning disabilities (NVLD), and 13 control children. Participants listened to verb-object combinations and judged them as acceptable or unacceptable. Stimuli belonged to four conditions, where concreteness and congruency were manipulated. All groups made more errors responding to abstract and to congruent sentences. Moreover, SLI participants performed worse than NVLD participants with abstract sentences. ERPs were analyzed in the time window 300–500 ms. SLI children show atypical, reversed effects of concreteness and congruence as compared to control and NVLD children, respectively. The results suggest that linguistic impairments disrupt abstract language processing more than visual-motor impairments. Moreover, ROI and SPM analyses of ERPs point to a predominant involvement of the left rather than the right hemisphere in the comprehension of figurative expressions.


2001 ◽  
Vol 13 (6) ◽  
pp. 829-843 ◽  
Author(s):  
A. L. Roskies ◽  
J. A. Fiez ◽  
D. A. Balota ◽  
M. E. Raichle ◽  
S. E. Petersen

To distinguish areas involved in the processing of word meaning (semantics) from other regions involved in lexical processing more generally, subjects were scanned with positron emission tomography (PET) while performing lexical tasks, three of which required varying degrees of semantic analysis and one that required phonological analysis. Three closely apposed regions in the left inferior frontal cortex and one in the right cerebellum were significantly active above baseline in the semantic tasks, but not in the nonsemantic task. The activity in two of the frontal regions was modulated by the difficulty of the semantic judgment. Other regions, including some in the left temporal cortex and the cerebellum, were active across all four language tasks. Thus, in addition to a number of regions known to be active during language processing, regions in the left inferior frontal cortex were specifically recruited during semantic processing in a task-dependent manner. A region in the right cerebellum may be functionally related to those in the left inferior frontal cortex. Discussion focuses on the implications of these results for current views regarding neural substrates of semantic processing.


Author(s):  
Angela D. Friederici ◽  
Noam Chomsky

An adequate description of the neural basis of language processing must consider the entire network both with respect to its structural white matter connections and the functional connectivities between the different brain regions as the information has to be sent between different language-related regions distributed across the temporal and frontal cortex. This chapter discusses the white matter fiber bundles that connect the language-relevant regions. The chapter is broken into three sections. In the first, we look at the white matter fiber tracts connecting the language-relevant regions in the frontal and temporal cortices; in the second, the ventral and dorsal pathways in the right hemisphere that connect temporal and frontal regions; and finally in the third, the two syntax-relevant and (at least) one semantic-relevant neuroanatomically-defined networks that sentence processing is based on. From this discussion, it becomes clear that online language processing requires information transfer via the long-range white matter fiber pathways that connect the language-relevant brain regions within each hemisphere and between hemispheres.


Author(s):  
Norman D. Cook

Speech production in most people is strongly lateralized to the left hemisphere (LH), but language understanding is generally a bilateral activity. At every level of linguistic processing that has been investigated experimentally, the right hemisphere (RH) has been found to make characteristic contributions, from the processing of the affective aspects of intonation, through the appreciation of word connotations, the decoding of the meaning of metaphors and figures of speech, to the understanding of the overall coherency of verbal humour, paragraphs and short stories. If both hemispheres are indeed engaged in linguistic decoding and both processes are required to achieve a normal level of understanding, a central question concerns how the separate language functions on the left and right are integrated. This chapter reviews relevant studies on the hemispheric contributions to language processing and the role of interhemispheric communications in cognition.


2005 ◽  
Vol 93 (2) ◽  
pp. 1020-1034 ◽  
Author(s):  
Eiichi Naito ◽  
Per E. Roland ◽  
Christian Grefkes ◽  
H. J. Choi ◽  
Simon Eickhoff ◽  
...  

We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.


Sign in / Sign up

Export Citation Format

Share Document