scholarly journals Self-Conscious Affect Is Modulated by Rapid Eye Movement Sleep but Not by Targeted Memory Reactivation–A Pilot Study

2021 ◽  
Vol 12 ◽  
Author(s):  
Risto Halonen ◽  
Liisa Kuula ◽  
Tommi Makkonen ◽  
Jaakko Kauramäki ◽  
Anu-Katriina Pesonen

The neurophysiological properties of rapid eye movement sleep (REMS) are believed to tune down stressor-related emotional responses. While prior experimental findings are controversial, evidence suggests that affective habituation is hindered if REMS is fragmented. To elucidate the topic, we evoked self-conscious negative affect in the participants (N = 32) by exposing them to their own out-of-tune singing in the evening. Affective response to the stressor was measured with skin conductance response and subjectively reported embarrassment. To address possible inter-individual variance toward the stressor, we measured the shame-proneness of participants with an established questionnaire. The stressor was paired with a sound cue to pilot a targeted memory reactivation (TMR) protocol during the subsequent night's sleep. The sample was divided into three conditions: control (no TMR), TMR during slow-wave sleep, and TMR during REMS. We found that pre- to post-sleep change in affective response was not influenced by TMR. However, REMS percentage was associated negatively with overnight skin conductance response habituation, especially in those individuals whose REMS was fragmented. Moreover, shame-proneness interacted with REM fragmentation such that the higher the shame-proneness, the more the affective habituation was dependent on non-fragmented REMS. In summary, the potential of REMS in affective processing may depend on the quality of REMS as well as on individual vulnerability toward the stressor type.

1981 ◽  
Vol 241 (4) ◽  
pp. E269-E274
Author(s):  
J. E. Garcia-Arraras

Slow-wave sleep (SWS) and rapid-eye-movement sleep (REM) were recorded in cats for 32 h a) under control conditions, b) following intraventricular infusions of artificial cerebrospinal fluid (CSF), and c) following infusions of sleep-promoting factor S prepared from human urine (SPU). During the first 12 h after receiving artificial CSF, the cats slept 4.9 +/- 0.2 h in slow-wave sleep (SWS) and 1.4 +/- 0.1 h in REM. Similar values were obtained from the same cats under control conditions. After infusions of SPU, the duration of SWS in the same cats increased to an average of 6.9 +/- 0.5 h with no significant change in REM averaged over 12 h; a transient decrease of REM in the first 4 h was fully compensated in subsequent hours. The increased SWS induced by the sleep-promoting factor from human urine subsided after 12 h, and there was no compensatory increase in wakefulness during the subsequent 20 h. The normal sleep cycle was not affected. In cats, therefore, the primary effect of SPU is to increase normal SWS, with little effect on REM.


2008 ◽  
Vol 108 (4) ◽  
pp. 627-633 ◽  
Author(s):  
Christopher P. Bonafide ◽  
Natalie Aucutt-Walter ◽  
Nicole Divittore ◽  
Tonya King ◽  
Edward O. Bixler ◽  
...  

Background Postoperative patients are sleep deprived. Opioids, commonly administered for postoperative pain control, are often mistakenly considered inducers of naturally occurring sleep. This study describes the effect of the opioid remifentanil on nocturnal sleep in healthy volunteers. In addition, this study tests the hypothesis that opioid-induced sleep disturbance is caused by a circadian pacemaker disturbance, reflected by suppressed nocturnal plasma concentration of melatonin. Methods Polysomnography was performed in 10 volunteers from 11:00 pm to 7:00 am for four nights at 6-day intervals. On two nights, remifentanil (0.01-0.04 microg x kg x min) was infused from 10:30 pm to 7:00 am, and either a placebo capsule or 3.0 mg melatonin was administered at 10:30 pm. On two additional nights, saline was infused, and the placebo or melatonin capsules were administered at 10:30 pm. Blood was drawn at 12:00 am, 3:00 am, and 6:00 am to measure the plasma concentration of melatonin and cortisol. A repeated-measures analysis of variance model was used to determine the effect of remifentanil on sleep stages, the effect of remifentanil on the plasma concentration of melatonin, and the effect of exogenous melatonin on remifentanil-induced sleep disturbance. Results Remifentanil inhibited rapid eye movement sleep (14.1 +/- 7.2% to 3.9 +/- 6.9%). The amount of slow wave sleep decreased from 6.8 +/- 7.6% to 3.2 +/- 6.1%, but this decrease was not statistically significant. Remifentanil did not decrease melatonin concentration. Melatonin administration did not prevent remifentanil-induced sleep disturbance. Conclusions An overnight constant infusion of remifentanil inhibits rapid eye movement sleep without suppressing the nocturnal melatonin surge.


SLEEP ◽  
2014 ◽  
Vol 37 (6) ◽  
pp. 1061-1075 ◽  
Author(s):  
Virginie Sterpenich ◽  
Christina Schmidt ◽  
Geneviève Albouy ◽  
Luca Matarazzo ◽  
Audrey Vanhaudenhuyse ◽  
...  

1986 ◽  
Vol 61 (4) ◽  
pp. 1293-1300 ◽  
Author(s):  
L. R. Kline ◽  
J. C. Hendricks ◽  
R. O. Davies ◽  
A. I. Pack

Respiration in rapid-eye-movement sleep (REMS) is known to be highly variable. The purpose of this study was to investigate the source of this variability and to determine which ordering principles remained operative in REM sleep. In unrestrained, naturally sleeping cats we recorded the electroencephalogram, electrooculogram, neck electromyogram, and diaphragmatic electromyogram (EMG) and computed its moving average (MAdi). As a reference, we first examined MAdi during “tonic” REMS, since breathing is fairly regular in this state. “Control” ranges for peak amplitude (PEMG), inspiratory time (TI), duration of postinspiratory inspiratory activity, expiratory time, and the calculated inspiratory slope (PEMG/TI) were determined by overlaying individual breath traces of the time course of MAdi during tonic REMS to form a composite tracing. Next, the time course of the EMG during individual breaths in slow-wave sleep (SWS) and a complete period of consecutive breaths in REMS (both tonic and phasic) were compared with this tonic REMS composite. The number of eye movements per breath was tabulated as an index of phasic activity. The inspiratory slopes during SWS and tonic REMS were similar. However, during phasic REMS, many breaths displayed either increases (excitation) or decreases (inhibition) in slope compared with the “typical” breaths seen in tonic REMS. The occurrence of these altered slopes increased with the frequency of phasic events. TI was inversely related to the slope of the EMG, which tended to minimize changes in PEMG.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document