scholarly journals Repeated Dosing of Ketamine in the Forced Swim Test: Are Multiple Shots Better Than One?

2021 ◽  
Vol 12 ◽  
Author(s):  
Ridge G. Weston ◽  
Paul J. Fitzgerald ◽  
Brendon O. Watson

The anesthetic drug ketamine has been successfully repurposed as an antidepressant in human subjects. This represents a breakthrough for clinical psychopharmacology, because unlike monoaminergic antidepressants, ketamine has rapid onset, including in Major Depressive Disorder (MDD) that is resistant to conventional pharmacotherapy. This rapid therapeutic onset suggests a unique mechanism of action, which continues to be investigated in reverse translational studies in rodents. A large fraction of rodent and human studies of ketamine have focused on the effects of only a single administration of ketamine, which presents a problem because MDD is typically a persistent illness that may require ongoing treatment with this drug to prevent relapse. Here we review behavioral studies in rodents that used repeated dosing of ketamine in the forced swim test (FST), with an eye toward eventual mechanistic studies. A subset of these studies carried out additional experiments with only a single injection of ketamine for comparison, and several studies used chronic psychosocial stress, where stress is a known causative factor in some cases of MDD. We find that repeated ketamine can in some cases paradoxically produce increases in immobility in the FST, especially at high doses such as 50 or 100 mg/kg. Several studies however provide evidence that repeated dosing is more effective than a single dose at decreasing immobility, including behavioral effects that last longer. Collectively, this growing literature suggests that repeated dosing of ketamine has prominent depression-related effects in rodents, and further investigation may help optimize the use of this drug in humans experiencing MDD.

RSC Advances ◽  
2017 ◽  
Vol 7 (26) ◽  
pp. 16005-16014 ◽  
Author(s):  
Kai-Qing Ma ◽  
Yan-Hong Miao ◽  
Xiao Li ◽  
Yu-Zhi Zhou ◽  
Xiao-Xia Gao ◽  
...  

1,3-Diynes compound 7a protected the corticosterone-injured PC12 cells through regulation of the apoptosis related proteins and exerted antidepressant effect in mice forced swim test in a concentration-dependent manner.


Author(s):  
Roni Yankelevitch-Yahav ◽  
Motty Franko ◽  
Avrham Huly ◽  
Ravid Doron

2021 ◽  
Vol 165 ◽  
pp. 56-57
Author(s):  
Shota Naoe ◽  
Takahiro Kataoka ◽  
Hina Shuto ◽  
Junki Yano ◽  
Tetsuya Nakada ◽  
...  

2019 ◽  
Vol 236 (11) ◽  
pp. 3353-3362 ◽  
Author(s):  
Mohammad Nasehi ◽  
Mohammad-Hossein Mohammadi-Mahdiabadi-Hasani ◽  
Mohaddeseh Ebrahimi-Ghiri ◽  
Mohammad-Reza Zarrindast

2021 ◽  
pp. 1-7
Author(s):  
Dylan J. Terstege ◽  
Debra S. MacDonald ◽  
R. Andrew Tasker

Abstract Objective: Ginsenosides, biologically active components of the root of Panax ginseng, have been reported to have therapeutic benefits in a number of disease states including psychiatric conditions such as major depressive disorder. Our objective was to determine if a standardised commercial ginseng extract, G115®, could reduce the signs of behavioural despair commonly observed in animal models of depression either alone or in combination with the selective serotonin reuptake inhibitor (SSRI) fluoxetine. Methods: Male Sprague-Dawley (SD) rats (N = 51) were divided into four groups: vehicle control, G115® ginseng root extract, fluoxetine and fluoxetine plus G115®. Rats were trained to voluntarily consume treatments twice daily for 14 days and were then tested in an open field (OF), elevated plus maze (EPM) and forced swim test (FST). Post-mortem hippocampal and prefrontal cortex tissue was analysed for expression of brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) by western blot. Results: One-way Analysis of Variance revealed no significant group differences in the OF or plus-maze performance on any variable examined. In the FST, fluoxetine significantly reduced immobility time and increased latency to immobility. The effects of fluoxetine were further significantly potentiated by co-administration of G115®. Post-mortem tissue analysis revealed significant group differences in BDNF expression in the left hippocampus and left prefrontal cortex without any accompanying changes in TrkB expression. Conclusions: We conclude that oral G115® significantly potentiates the antidepressant-like effect of fluoxetine in the FST in the absence of potentially confounding effects on locomotion and anxiety.


2021 ◽  
pp. 026988112199688
Author(s):  
Eduardo R Butelman ◽  
Caroline Baynard ◽  
Bryan D McElroy ◽  
Thomas E Prisinzano ◽  
Mary Jeanne Kreek

Background: Novel short-acting κ(kappa)-opioid receptor selective antagonists are translational tools to examine the impact of the κ-receptor/dynorphin system in assays related to central nervous system dysfunction (e.g., substance use disorders, anhedonia and depression). The effects of such compounds have been compared in males and females under very limited conditions. Aims: The goal of this study was to examine potential sex differences in the effects of a κ-agonist and a short-acting κ-antagonist in an ethologically relevant test of anhedonia, the “splash test” of self-grooming, and also in the forced swim test and in locomotor activity. Methods: We examined the dose-dependence of grooming deficits caused by the κ-agonist U50,488 (0.1–3.2 mg/kg intraperitoneal (i.p.)) in gonadally intact adult male and female C57BL/6J mice. We then compared the effects of the short-acting κ-antagonist LY2795050 ((3-chloro-4-(4-(((2S)-2-pyridin-3-ylpyrrolidin-1-yl)methyl) phenoxy)benzamide)); 0.032–0.1 mg/kg i.p.) in blocking grooming deficits caused by U50,488 (3.2 mg/kg). The effects of LY2795050 were also studied in the forced swim test (FST). The effects of LY2795050 in blocking the locomotor depressant effects of U50,488 (10 mg/kg) were also studied. Results: U50,488 produced dose-dependent grooming deficits in male and female mice, and LY2795050 prevented these effects. In contrast, LY2795050 decreased immobility in the FST in males at a dose of 0.1 mg/kg, but not in females, up to a dose of 0.32 mg/kg. Also, LY2795050 (0.32 mg/kg) prevented and also reversed the locomotor-depressant effects of U50,488 (10 mg/kg), in males and females. Conclusions: This study further implicates the κ-receptor system in ethologically relevant aspects of anhedonia, and confirms sexual dimorphism in some behavioral effects of novel κ-antagonists.


Author(s):  
Ana Paula Ramos Costa ◽  
Cintia Vieira ◽  
Lauren O.L. Bohner ◽  
Cristiane Felisbino Silva ◽  
Evelyn Cristina da Silva Santos ◽  
...  

Neuroscience ◽  
2004 ◽  
Vol 126 (4) ◽  
pp. 849-857 ◽  
Author(s):  
G Drossopoulou ◽  
K Antoniou ◽  
E Kitraki ◽  
G Papathanasiou ◽  
E Papalexi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document