scholarly journals Effect of Estrous Cycle on Behavior of Females in Rodent Tests of Anxiety

2021 ◽  
Vol 12 ◽  
Author(s):  
Thelma A. Lovick ◽  
Hélio Zangrossi

Anxiety disorders are more prevalent in women than in men. In women the menstrual cycle introduces another variable; indeed, some conditions e.g., premenstrual syndrome, are menstrual cycle specific. Animal models of fear and anxiety, which form the basis for research into drug treatments, have been developed almost exclusively, using males. There remains a paucity of work using females and the available literature presents a confusing picture. One confound is the estrous cycle in females, which some authors consider, but many do not. Importantly, there are no accepted standardized criteria for defining cycle phase, which is important given the rapidly changing hormonal profile during the 4-day cycle of rodents. Moreover, since many behavioral tests that involve a learning component or that consider extinction of a previously acquired association require several days to complete; the outcome may depend on the phase of the cycle on the days of training as well as on test days. In this article we consider responsiveness of females compared to males in a number of commonly used behavioral tests of anxiety and fear that were developed in male rodents. We conclude that females perform in a qualitatively similar manner to males in most tests although there may be sex and strain differences in sensitivity. Tests based on unconditioned threatening stimuli are significantly influenced by estrous cycle phase with animals displaying increased responsiveness in the late diestrus phase of the cycle (similar to the premenstrual phase in women). Tests that utilize conditioned fear paradigms, which involve a learning component appear to be less impacted by the estrous cycle although sex and cycle-related differences in responding can still be detected. Ethologically-relevant tests appear to have more translational value in females. However, even when sex differences in behavior are not detected, the same outward behavioral response may be mediated by different brain mechanisms. In order to progress basic research in the field of female psychiatry and psychopharmacology, there is a pressing need to validate and standardize experimental protocols for using female animal models of anxiety-related states.

Author(s):  
Richard McCarty

Much of the research relating to animal models of anxiety has been devoted to developing more effective drugs for the treatment of the various anxiety disorders. Using selective breeding of laboratory mice and rats, investigators have developed high-anxiety and low-anxiety lines that have been especially valuable for basic research purposes. Other approaches to enhance the expression of an anxiety-like phenotype have included prenatal or early postnatal exposure to stressors, maternal immune activation, or selecting offspring based upon differences in the maternal behaviors of their mothers. In addition, risk genes for anxiety disorders have been studied in animal models, including genes related to serotonin, neuropeptide Y, neuropeptide S, and corticotropin-releasing factor signaling in the brain. Finally, some infant rhesus monkeys display an anxious temperament and extreme behavioral inhibition when separated from their mothers. This nonhuman primate model affords many opportunities to explore brain mechanisms and interventions that may be effective in preventing the further development of an anxious phenotype as these monkeys mature.


2013 ◽  
Vol 103 (3) ◽  
pp. 631-636 ◽  
Author(s):  
Miguel Molina-Hernández ◽  
N. Patricia Téllez-Alcántara ◽  
Jorge I. Olivera-López ◽  
M. Teresa Jaramillo

Neuroscience ◽  
2009 ◽  
Vol 164 (3) ◽  
pp. 887-895 ◽  
Author(s):  
M.R. Milad ◽  
S.A. Igoe ◽  
K. Lebron-Milad ◽  
J.E. Novales

2004 ◽  
Vol 97 (1) ◽  
pp. 347-359 ◽  
Author(s):  
Dina Lipkind ◽  
Anat Sakov ◽  
Neri Kafkafi ◽  
Gregory I. Elmer ◽  
Yoav Benjamini ◽  
...  

Anxiety is a widely studied psychiatric disorder and is thought to be a complex and multidimensional phenomenon. Sensitive behavioral discrimination of animal models of anxiety is crucial for the elucidation of the behavioral components of anxiety and the physiological processes that mediate them. Commonly used behavior paradigms of anxiety usually include only a few automatically collected measures; these do not exhaust the behavioral richness exhibited by animals, thus perhaps missing important differences between preparations. The aim of the present study was to expand the repertoire of automatically collected measures in a classical test of anxiety: behavior in relation to the wall in the open field. We present an algorithm, based on the Software for the Exploration of Exploration strategy, which automatically partitions the mouse path into intrinsically defined patterns of movement near the wall and in the center. These patterns are used to design new end points, which provide an articulated description of various aspects of behavior near the wall and in the center. Sixteen new end points were designed with data from C57BL/6J and DBA/2J mice tested in three laboratories. The strain differences in all end points were evaluated on another data set to assess their validity and were found to remain stable. Ten of the sixteen end points were found to discriminate between the two strains in a replicable manner. The entire set of end points can be used on various genetic and pharmacological models of anxiety with good prospects of providing fine discrimination in a replicable manner.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Vida Ungerer ◽  
Abel J. Bronkhorst ◽  
Priscilla Van den Ackerveken ◽  
Marielle Herzog ◽  
Stefan Holdenrieder

AbstractRecent advances in basic research have unveiled several strategies for improving the sensitivity and specificity of cell-free DNA (cfDNA) based assays, which is a prerequisite for broadening its clinical use. Included among these strategies is leveraging knowledge of both the biogenesis and physico-chemical properties of cfDNA towards the identification of better disease-defining features and optimization of methods. While good progress has been made on this front, much of cfDNA biology remains uncharted. Here, we correlated serial measurements of cfDNA size, concentration and nucleosome histone modifications with various cellular parameters, including cell growth rate, viability, apoptosis, necrosis, and cell cycle phase in three different cell lines. Collectively, the picture emerged that temporal changes in cfDNA levels are rather irregular and not the result of constitutive release from live cells. Instead, changes in cfDNA levels correlated with intermittent cell death events, wherein apoptosis contributed more to cfDNA release in non-cancer cells and necrosis more in cancer cells. Interestingly, the presence of a ~ 3 kbp cfDNA population, which is often deemed to originate from accidental cell lysis or active release, was found to originate from necrosis. High-resolution analysis of this cfDNA population revealed an underlying DNA laddering pattern consisting of several oligo-nucleosomes, identical to those generated by apoptosis. This suggests that necrosis may contribute significantly to the pool of mono-nucleosomal cfDNA fragments that are generally interrogated for cancer mutational profiling. Furthermore, since active steps are often taken to exclude longer oligo-nucleosomes from clinical biospecimens and subsequent assays this raises the question of whether important pathological information is lost.


1985 ◽  
Vol 249 (2) ◽  
pp. R186-R191 ◽  
Author(s):  
L. A. Stephenson ◽  
M. A. Kolka

The changes occurring in the esophageal temperature (Tes) thresholds for initiation of heat loss responses as affected by the circadian period and menstrual cycle were studied. Four women exercised at 60% peak Vo2 in 35 degrees C (ambient water vapor pressure 1.73 kPa) for 30 min at 0400 and 1600 during the follicular (F) and luteal (L) phase. Tes, arm sweating rate (msw), and forearm blood flow (FBF) were measured frequently. At rest, Tes averaged 0.3 degrees C higher during L than F at both 0400 and 1600 and approximately 0.4 degrees C higher at 1600 than at 0400 during both phases. During exercise transients, the slopes of the FBF:Tes and the msw:Tes relationships were not different among treatments. The thresholds for initiation of sweating and cutaneous vasodilation were higher at 1600 than 0400 during both phases. Thresholds during F at 0400 averaged 36.44 degrees C for msw and 36.80 degrees C for vasodilation. The thresholds during L at 1600 averaged 37.46 and 37.53 degrees C for sweating and vasodilation, respectively. Our data indicate that the thermoregulatory effector activity during exercise is a function of numerous inputs, and one of these may be hormonal or hormonal-like in action. Controlling time of day and menstrual cycle phase are as important as controlling for aerobic power, age, and fitness in studying female thermoregulatory responses during exercise.


Sign in / Sign up

Export Citation Format

Share Document