scholarly journals The Emerging Role of SPECT Functional Neuroimaging in Schizophrenia and Depression

2021 ◽  
Vol 12 ◽  
Author(s):  
Anil Kalyoncu ◽  
Ali Saffet Gonul

Over the last three decades, the brain's functional and structural imaging has become more prevalent in psychiatric research and clinical application. A substantial amount of psychiatric research is based on neuroimaging studies that aim to illuminate neural mechanisms underlying psychiatric disorders. Single-photon emission computed tomography (SPECT) is one of those developing brain imaging techniques among various neuroimaging technologies. Compared to PET, SPECT imaging is easy, less expensive, and practical for radioligand use. Current technologies increased the spatial accuracy of SPECT findings by combining the functional SPECT images with CT images. The radioligands bind to receptors such as 5-hydroxytryptamine 2A, and dopamine transporters can help us comprehend neural mechanisms of psychiatric disorders based on neurochemicals. This mini-review focuses on the SPECT-based neuroimaging approach to psychiatric disorders such as schizophrenia and major depressive disorder (MDD). Research-based SPECT findings of psychiatric disorders indicate that there are notable changes in biochemical components in certain disorders. Even though many studies support that SPECT can be used in psychiatric clinical practice, we still only use subjective diagnostic criteria such as the Diagnostic Statistical Manual of Mental Disorders (DSM-5). Glimpsing into the brain's biochemical world via SPECT in psychiatric disorders provides more information about the pathophysiology and future implication of neuroimaging techniques.

Author(s):  
Abass Alavi ◽  
Andrew B. Newberg

Functional neuroimaging with positron emission tomography (PET), single photon emission computed tomography (SPECT), and functional magnetic resonance imaging (fMRI) can be highly useful in the evaluation and management of patients with psychiatric disorders. PET and SPECT imaging typically evaluate cerebral metabolism and blood flow, respectively, and can determine patterns associated with different disorders such as depression or schizophrenia. PET and SPECT imaging can also evaluate neurotransmitter changes such as dopamine or serotonin associated with different psychiatric disorders. fMRI is an excellent tool for studying the effects of psychiatric disorders on specific brain processes related to cognition and mood. fMRI activations studies allow researchers to present various stimuli to a subject in order to determine how the brain reacts and whether psychiatric disorders are associated with different brain reactivity patterns. Functional neuroimaging with PET, SPECT, and fMRI can be highly useful in the investigation of the mechanism of action of integrative therapies for psychiatric disorders.


2021 ◽  
Vol 14 (5) ◽  
pp. 385
Author(s):  
Leonardo L. Fuscaldi ◽  
Danielle V. Sobral ◽  
Ana Claudia R. Durante ◽  
Fernanda F. Mendonça ◽  
Ana Cláudia C. Miranda ◽  
...  

Prostate-specific membrane antigen (PSMA) is a glycoprotein present in the prostate, that is overexpressed in prostate cancer (PCa). Recently, PSMA-directed radiopharmaceuticals have been developed, allowing the pinpointing of tumors with the Positron Emission Tomography (PET) or Single Photon Emission Computed Tomography (SPECT) imaging techniques. The aim of the present work was to standardize and validate an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11, as well as to produce a radiopharmaceutical for PET imaging of PCa malignancies. [68Ga]Ga-PSMA-11 was evaluated to determine the radiochemical purity (RCP), stability in saline solution and serum, lipophilicity, affinity to serum proteins, binding and internalization to lymph node carcinoma of the prostate (LNCaP) cells, and ex vivo biodistribution in mice. The radiopharmaceutical was produced with an RCP of 99.06 ± 0.10%, which was assessed with reversed-phase high-performance liquid chromatography (RP-HPLC). The product was stable in saline solution for up to 4 h (RCP > 98%) and in serum for up to 1 h (RCP > 95%). The lipophilicity was determined as −3.80 ± 0.15, while the serum protein binding (SPB) was <17%. The percentages of binding to LNCaP cells were 4.07 ± 0.51% (30 min) and 4.56 ± 0.46% (60 min), while 19.22 ± 2.73% (30 min) and 16.85 ± 1.34% (60 min) of bound material was internalized. High accumulation of [68Ga]Ga-PSMA-11 was observed in the kidneys, spleen, and tumor, with a tumor-to-contralateral-muscle ratio of >8.5 and a tumor-to-blood ratio of >3.5. In conclusion, an automatic synthesis module-based radiolabeling protocol for [68Ga]Ga-PSMA-11 was standardized and the product was evaluated, thus verifying its characteristics for PET imaging of PCa tumors in a clinical environment.


1997 ◽  
Vol 8 (S3) ◽  
pp. 239-243 ◽  
Author(s):  
David L. Sultzer

Neuroimaging studies have contributed greatly to our understanding of Alzheimer's disease and other dementias. Computed tomography and magnetic resonance imaging reveal brain structure and aid in the diagnostic evaluation of patients with cognitive impairment. Functional neuroimaging studies use positron emission tomography, single-photon emission computed tomography, and other methods to measure regional cerebral activity, including metabolic rate, blood flow, and neuroreceptor density. Functional neuroimaging results can be useful clinically and have also been used in a variety of research applications to examine physiologic variables in neuropsychiatric illnesses.


Doctor Ru ◽  
2020 ◽  
Vol 19 (9) ◽  
pp. 6-12
Author(s):  
M.R. Sapronova ◽  
◽  
D.V. Dmitrenko ◽  
N.A. Schnaider ◽  
A.A. Molgachev ◽  
...  

Objective of the Review: To describe available functional neuroimaging techniques for use in patients with Parkinson’s disease (PD). Key Points: Parkinson’s disease is a neurodegenerative disorder which affects 2-3% of people older than 65 years. The main neuropathological hallmarks of PD are an accumulation of alpha-synuclein aggregates in the cellular cytoplasm and a loss of neurons in the pars compacta of the substantia nigra, leading to dopamine deficiency. Clinical symptoms of the disease appear when the underlying neural impairment is already advanced, which significantly reduces treatment options. Over the two last decades, functional neuroimaging techniques such as positron emission tomography, single-photon emission computed tomography, proton magnetic resonance spectroscopy, and transcranial sonography have increasingly been used for diagnosing PD during patients’ lifetime and understanding the neuropathological mechanisms and compensatory reactions underlying its symptoms, as well as for monitoring the progression of PD. Conclusion: Modern functional neuroimaging techniques not only facilitate differential diagnosis of PD, but also make it possible to detect the disease at its early/preclinical stage. Keywords: Parkinson’s disease, neuroimaging, positron emission tomography, single-photon emission computed tomography, proton magnetic resonance spectroscopy, transcranial sonography.


Cancers ◽  
2021 ◽  
Vol 13 (21) ◽  
pp. 5459
Author(s):  
Huiling Li ◽  
Zhen Liu ◽  
Lujie Yuan ◽  
Kevin Fan ◽  
Yongxue Zhang ◽  
...  

Breast cancer is a malignant tumor that can affect women worldwide and endanger their health and wellbeing. Early detection of breast cancer can significantly improve the prognosis and survival rate of patients, but with traditional anatomical imagine methods, it is difficult to detect lesions before morphological changes occur. Radionuclide-based molecular imaging based on positron emission tomography (PET) and single-photon emission computed tomography (SPECT) displays its advantages for detecting breast cancer from a functional perspective. Radionuclide labeling of small metabolic compounds can be used for imaging biological processes, while radionuclide labeling of ligands/antibodies can be used for imaging receptors. Noninvasive visualization of biological processes helps elucidate the metabolic state of breast cancer, while receptor-targeted radionuclide molecular imaging is sensitive and specific for visualization of the overexpressed molecular markers in breast cancer, contributing to early diagnosis and better management of cancer patients. The rapid development of radionuclide probes aids the diagnosis of breast cancer in various aspects. These probes target metabolism, amino acid transporters, cell proliferation, hypoxia, estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), gastrin-releasing peptide receptor (GRPR) and so on. This article provides an overview of the development of radionuclide molecular imaging techniques present in preclinical or clinical studies, which are used as tools for early breast cancer diagnosis.


Heart ◽  
2021 ◽  
pp. heartjnl-2019-315628
Author(s):  
Rebecca Schofield ◽  
Leon Menezes ◽  
Stephen Richard Underwood

Radionuclide imaging remains an essential component of modern cardiology. There is overlap with the information from other imaging techniques, but no technique is static and new developments have expanded its role. This review focuses on ischaemic heart disease, heart failure, infection and inflammation. Radiopharmaceutical development includes the wider availability of positron emission tomography (PET) tracers such as rubidium-82, which allows myocardial perfusion to be quantified in absolute terms. Compared with alternative techniques, myocardial perfusion scintigraphy PET and single photon emission computed tomography (SPECT) have the advantages of being widely applicable using exercise or pharmacological stress, full coverage of the myocardium and a measure of ischaemic burden, which helps to triage patients between medical therapy and revascularisation. Disadvantages include the availability of expertise in some cardiac centres and the lack of simple SPECT quantification, meaning that global abnormalities can be underestimated. In patients with heart failure, despite the findings of the STICH (Surgical Treatment for Ischemic Heart Failure) trial, there are still data to support the assessment of myocardial hibernation in predicting when abolition of ischaemia might lead to improvement in ventricular function. Imaging of sympathetic innervation is well validated, but simpler markers of prognosis mean that it has not been widely adopted. There are insufficient data to support its use in predicting the need for implanted devices, but non-randomised studies are promising. Other areas where radionuclide imaging is uniquely valuable are detection and monitoring of endocarditis, device infection, myocardial inflammation in sarcoidosis, myocarditis and so on, and reliable detection of deposition in suspected transthyretin-related amyloidosis.


Sign in / Sign up

Export Citation Format

Share Document