scholarly journals Ontology-Enabled Emotional Sentiment Analysis on COVID-19 Pandemic-Related Twitter Streams

2021 ◽  
Vol 9 ◽  
Author(s):  
Senthil Kumar Narayanasamy ◽  
Kathiravan Srinivasan ◽  
Saeed Mian Qaisar ◽  
Chuan-Yu Chang

The exponential growth of social media users has changed the dynamics of retrieving the potential information from user-generated content and transformed the paradigm of information-retrieval mechanism with the novel developments on the concept of “web of data”. In this regard, our proposed Ontology-Based Sentiment Analysis provides two novel approaches: First, the emotion extraction on tweets related to COVID-19 is carried out by a well-formed taxonomy that comprises possible emotional concepts with fine-grained properties and polarized values. Second, the potential entities present in the tweet can be analyzed for semantic associativity. The extraction of emotions can be performed in two cases: (i) words directly associated with the emotional concepts present in the taxonomy and (ii) words indirectly present in the emotional concepts. Though the latter case is very challenging in processing the tweets to find the hidden patterns and extract the meaningful facts associated with it, our proposed work is able to extract and detect almost 81% of true positives and considerably able to detect the false negatives. Finally, the proposed approach's superior performance is witnessed from its comparison with other peer-level approaches.

Author(s):  
Stefanos Angelidis ◽  
Mirella Lapata

We consider the task of fine-grained sentiment analysis from the perspective of multiple instance learning (MIL). Our neural model is trained on document sentiment labels, and learns to predict the sentiment of text segments, i.e. sentences or elementary discourse units (EDUs), without segment-level supervision. We introduce an attention-based polarity scoring method for identifying positive and negative text snippets and a new dataset which we call SpoT (as shorthand for Segment-level POlariTy annotations) for evaluating MIL-style sentiment models like ours. Experimental results demonstrate superior performance against multiple baselines, whereas a judgement elicitation study shows that EDU-level opinion extraction produces more informative summaries than sentence-based alternatives.


2021 ◽  
Vol 39 (2) ◽  
pp. 1-33
Author(s):  
Peng Liu ◽  
Lemei Zhang ◽  
Jon Atle Gulla

With the dramatic expansion of international markets, consumers write reviews in different languages, which poses a new challenge for Recommender Systems (RSs) dealing with this increasing amount of multilingual information. Recent studies that leverage deep-learning techniques for review-aware RSs have demonstrated their effectiveness in modelling fine-grained user-item interactions through the aspects of reviews. However, most of these models can neither take full advantage of the contextual information from multilingual reviews nor discriminate the inherent ambiguity of words originated from the user’s different tendency in writing. To this end, we propose a novel Multilingual Review-aware Deep Recommendation Model (MrRec) for rating prediction tasks. MrRec mainly consists of two parts: (1) Multilingual aspect-based sentiment analysis module (MABSA), which aims to jointly extract aligned aspects and their associated sentiments in different languages simultaneously with only requiring overall review ratings. (2) Multilingual recommendation module that learns aspect importances of both the user and item with considering different contributions of multiple languages and estimates aspect utility via a dual interactive attention mechanism integrated with aspect-specific sentiments from MABSA. Finally, overall ratings can be inferred by a prediction layer adopting the aspect utility value and aspect importance as inputs. Extensive experimental results on nine real-world datasets demonstrate the superior performance and interpretability of our model.


Author(s):  
Yufei Li ◽  
Xiaoyong Ma ◽  
Xiangyu Zhou ◽  
Pengzhen Cheng ◽  
Kai He ◽  
...  

Abstract Motivation Bio-entity Coreference Resolution focuses on identifying the coreferential links in biomedical texts, which is crucial to complete bio-events’ attributes and interconnect events into bio-networks. Previously, as one of the most powerful tools, deep neural network-based general domain systems are applied to the biomedical domain with domain-specific information integration. However, such methods may raise much noise due to its insufficiency of combining context and complex domain-specific information. Results In this paper, we explore how to leverage the external knowledge base in a fine-grained way to better resolve coreference by introducing a knowledge-enhanced Long Short Term Memory network (LSTM), which is more flexible to encode the knowledge information inside the LSTM. Moreover, we further propose a knowledge attention module to extract informative knowledge effectively based on contexts. The experimental results on the BioNLP and CRAFT datasets achieve state-of-the-art performance, with a gain of 7.5 F1 on BioNLP and 10.6 F1 on CRAFT. Additional experiments also demonstrate superior performance on the cross-sentence coreferences. Supplementary information Supplementary data are available at Bioinformatics online.


2020 ◽  
Vol 34 (05) ◽  
pp. 8600-8607
Author(s):  
Haiyun Peng ◽  
Lu Xu ◽  
Lidong Bing ◽  
Fei Huang ◽  
Wei Lu ◽  
...  

Target-based sentiment analysis or aspect-based sentiment analysis (ABSA) refers to addressing various sentiment analysis tasks at a fine-grained level, which includes but is not limited to aspect extraction, aspect sentiment classification, and opinion extraction. There exist many solvers of the above individual subtasks or a combination of two subtasks, and they can work together to tell a complete story, i.e. the discussed aspect, the sentiment on it, and the cause of the sentiment. However, no previous ABSA research tried to provide a complete solution in one shot. In this paper, we introduce a new subtask under ABSA, named aspect sentiment triplet extraction (ASTE). Particularly, a solver of this task needs to extract triplets (What, How, Why) from the inputs, which show WHAT the targeted aspects are, HOW their sentiment polarities are and WHY they have such polarities (i.e. opinion reasons). For instance, one triplet from “Waiters are very friendly and the pasta is simply average” could be (‘Waiters’, positive, ‘friendly’). We propose a two-stage framework to address this task. The first stage predicts what, how and why in a unified model, and then the second stage pairs up the predicted what (how) and why from the first stage to output triplets. In the experiments, our framework has set a benchmark performance in this novel triplet extraction task. Meanwhile, it outperforms a few strong baselines adapted from state-of-the-art related methods.


2021 ◽  
Author(s):  
Sergio Consoli ◽  
Luca Barbaglia ◽  
Sebastiano Manzan

Author(s):  
Peilian Zhao ◽  
Cunli Mao ◽  
Zhengtao Yu

Aspect-Based Sentiment Analysis (ABSA), a fine-grained task of opinion mining, which aims to extract sentiment of specific target from text, is an important task in many real-world applications, especially in the legal field. Therefore, in this paper, we study the problem of limitation of labeled training data required and ignorance of in-domain knowledge representation for End-to-End Aspect-Based Sentiment Analysis (E2E-ABSA) in legal field. We proposed a new method under deep learning framework, named Semi-ETEKGs, which applied E2E framework using knowledge graph (KG) embedding in legal field after data augmentation (DA). Specifically, we pre-trained the BERT embedding and in-domain KG embedding for unlabeled data and labeled data with case elements after DA, and then we put two embeddings into the E2E framework to classify the polarity of target-entity. Finally, we built a case-related dataset based on a popular benchmark for ABSA to prove the efficiency of Semi-ETEKGs, and experiments on case-related dataset from microblog comments show that our proposed model outperforms the other compared methods significantly.


2021 ◽  
Vol 2050 (1) ◽  
pp. 012006
Author(s):  
Xili Dai ◽  
Chunmei Ma ◽  
Jingwei Sun ◽  
Tao Zhang ◽  
Haigang Gong ◽  
...  

Abstract Training deep neural networks from only a few examples has been an interesting topic that motivated few shot learning. In this paper, we study the fine-grained image classification problem in a challenging few-shot learning setting, and propose the Self-Amplificated Network (SAN), a method based on meta-learning to tackle this problem. The SAN model consists of three parts, which are the Encoder, Amplification and Similarity Modules. The Encoder Module encodes a fine-grained image input into a feature vector. The Amplification Module is used to amplify subtle differences between fine-grained images based on the self attention mechanism which is composed of multi-head attention. The Similarity Module measures how similar the query image and the support set are in order to determine the classification result. In-depth experiments on three benchmark datasets have showcased that our network achieves superior performance over the competing baselines.


Sign in / Sign up

Export Citation Format

Share Document