scholarly journals Backpropagation-Based Decoding for Multimodal Machine Translation

2022 ◽  
Vol 4 ◽  
Author(s):  
Ziyan Yang ◽  
Leticia Pinto-Alva ◽  
Franck Dernoncourt ◽  
Vicente Ordonez

People are able to describe images using thousands of languages, but languages share only one visual world. The aim of this work is to use the learned intermediate visual representations from a deep convolutional neural network to transfer information across languages for which paired data is not available in any form. Our work proposes using backpropagation-based decoding coupled with transformer-based multilingual-multimodal language models in order to obtain translations between any languages used during training. We particularly show the capabilities of this approach in the translation of German-Japanese and Japanese-German sentence pairs, given a training data of images freely associated with text in English, German, and Japanese but for which no single image contains annotations in both Japanese and German. Moreover, we demonstrate that our approach is also generally useful in the multilingual image captioning task when sentences in a second language are available at test time. The results of our method also compare favorably in the Multi30k dataset against recently proposed methods that are also aiming to leverage images as an intermediate source of translations.

2018 ◽  
Vol 28 (09) ◽  
pp. 1850007
Author(s):  
Francisco Zamora-Martinez ◽  
Maria Jose Castro-Bleda

Neural Network Language Models (NNLMs) are a successful approach to Natural Language Processing tasks, such as Machine Translation. We introduce in this work a Statistical Machine Translation (SMT) system which fully integrates NNLMs in the decoding stage, breaking the traditional approach based on [Formula: see text]-best list rescoring. The neural net models (both language models (LMs) and translation models) are fully coupled in the decoding stage, allowing to more strongly influence the translation quality. Computational issues were solved by using a novel idea based on memorization and smoothing of the softmax constants to avoid their computation, which introduces a trade-off between LM quality and computational cost. These ideas were studied in a machine translation task with different combinations of neural networks used both as translation models and as target LMs, comparing phrase-based and [Formula: see text]-gram-based systems, showing that the integrated approach seems more promising for [Formula: see text]-gram-based systems, even with nonfull-quality NNLMs.


2020 ◽  
Author(s):  
Mayla R Boguslav ◽  
Negacy D Hailu ◽  
Michael Bada ◽  
William A Baumgartner ◽  
Lawrence E Hunter

AbstractBackgroundAutomated assignment of specific ontology concepts to mentions in text is a critical task in biomedical natural language processing, and the subject of many open shared tasks. Although the current state of the art involves the use of neural network language models as a post-processing step, the very large number of ontology classes to be recognized and the limited amount of gold-standard training data has impeded the creation of end-to-end systems based entirely on machine learning. Recently, Hailu et al. recast the concept recognition problem as a type of machine translation and demonstrated that sequence-to-sequence machine learning models had the potential to outperform multi-class classification approaches. Here we systematically characterize the factors that contribute to the accuracy and efficiency of several approaches to sequence-to-sequence machine learning.ResultsWe report on our extensive studies of alternative methods and hyperparameter selections. The results not only identify the best-performing systems and parameters across a wide variety of ontologies but also illuminate about the widely varying resource requirements and hyperparameter robustness of alternative approaches. Analysis of the strengths and weaknesses of such systems suggest promising avenues for future improvements as well as design choices that can increase computational efficiency with small costs in performance. Bidirectional Encoder Representations from Transformers for Biomedical Text Mining (BioBERT) for span detection (as previously found) along with the Open-source Toolkit for Neural Machine Translation (OpenNMT) for concept normalization achieve state-of-the-art performance for most ontologies in CRAFT Corpus. This approach uses substantially fewer computational resources, including hardware, memory, and time than several alternative approaches.ConclusionsMachine translation is a promising avenue for fully machine-learning-based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, evaluated via a direct comparison to previous results from the 2019 CRAFT Shared Task. Experiments illuminating the reasons for the surprisingly good performance of sequence-to-sequence methods targeting ontology identifiers suggest that further progress may be possible by mapping to alternative target concept representations. All code and models can be found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation.


2021 ◽  
Author(s):  
Tham Vo

Abstract Neural image captioning (NIC) is considered as a primitive problem artificial intelligence (AI) in which creates a connection between computer vision (CV) and natural language processing (NLP). However, recent attribute-based and textual semantic attention based models in NIC still encounter challenges related to irrelevant concentration of the designed attention mechanism on the relationship between extracted visual features and textual representations of corresponding image’s caption. Moreover, recent NIC-based models also suffer from the uncertainties and noises of extracted visual latent features from images which sometime leads to the disruption of the given image captioning model to sufficiently attend on the correct visual concepts. To solve these challenges, in this paper, we proposed an end-to-end integrated deep fuzzy-neural network with the unified attention-based semantic-enhanced vision-language approach, called as FuzzSemNIC. To alleviate noises and ambiguities from the extracted visual features, we apply a fused deep fuzzy-based neural network architecture to effectively learn and generate the visual representations of images. Then, the learnt fuzzy-based visual embedding vectors are combined with selective attributes/concepts of images via a recurrent neural network (RNN) architecture to incorporate the fused latent visual features into captioning task. Finally, the fused visual representations are integrated with a unified vision-language encoder-decoder for handling caption generation task. Extensive experiments in benchmark NIC-based datasets demonstrate the effectiveness of our proposed FuzzSemNIC model.


2021 ◽  
Vol 22 (S1) ◽  
Author(s):  
Mayla R. Boguslav ◽  
Negacy D. Hailu ◽  
Michael Bada ◽  
William A. Baumgartner ◽  
Lawrence E. Hunter

Abstract Background Automated assignment of specific ontology concepts to mentions in text is a critical task in biomedical natural language processing, and the subject of many open shared tasks. Although the current state of the art involves the use of neural network language models as a post-processing step, the very large number of ontology classes to be recognized and the limited amount of gold-standard training data has impeded the creation of end-to-end systems based entirely on machine learning. Recently, Hailu et al. recast the concept recognition problem as a type of machine translation and demonstrated that sequence-to-sequence machine learning models have the potential to outperform multi-class classification approaches. Methods We systematically characterize the factors that contribute to the accuracy and efficiency of several approaches to sequence-to-sequence machine learning through extensive studies of alternative methods and hyperparameter selections. We not only identify the best-performing systems and parameters across a wide variety of ontologies but also provide insights into the widely varying resource requirements and hyperparameter robustness of alternative approaches. Analysis of the strengths and weaknesses of such systems suggest promising avenues for future improvements as well as design choices that can increase computational efficiency with small costs in performance. Results Bidirectional encoder representations from transformers for biomedical text mining (BioBERT) for span detection along with the open-source toolkit for neural machine translation (OpenNMT) for concept normalization achieve state-of-the-art performance for most ontologies annotated in the CRAFT Corpus. This approach uses substantially fewer computational resources, including hardware, memory, and time than several alternative approaches. Conclusions Machine translation is a promising avenue for fully machine-learning-based concept recognition that achieves state-of-the-art results on the CRAFT Corpus, evaluated via a direct comparison to previous results from the 2019 CRAFT shared task. Experiments illuminating the reasons for the surprisingly good performance of sequence-to-sequence methods targeting ontology identifiers suggest that further progress may be possible by mapping to alternative target concept representations. All code and models can be found at: https://github.com/UCDenver-ccp/Concept-Recognition-as-Translation.


Author(s):  
Xuanxuan Wu ◽  
Jian Liu ◽  
Xinjie Li ◽  
Jinan Xu ◽  
Yufeng Chen ◽  
...  

Stylized neural machine translation (NMT) aims to translate sentences of one style into sentences of another style, which is essential for the application of machine translation in a real-world scenario. However, a major challenge in this task is the scarcity of high-quality parallel data which is stylized paired. To address this problem, we propose an iterative dual knowledge transfer framework that utilizes informal training data of machine translation and formality style transfer data to create large-scale stylized paired data, for the training of stylized machine translation model. Specifically, we perform bidirectional knowledge transfer between translation model and text style transfer model iteratively through knowledge distillation. Then, we further propose a data-refinement module to process the noisy synthetic parallel data generated during knowledge transfer. Experiment results demonstrate the effectiveness of our method, achieving an improvement over the existing best model by 5 BLEU points on MTFC dataset. Meanwhile, extensive analyses illustrate our method can also improve the accuracy of formality style transfer.


2014 ◽  
Vol 102 (1) ◽  
pp. 81-92 ◽  
Author(s):  
Baltescu Paul ◽  
Blunsom Phil ◽  
Hoang Hieu

Abstract This paper presents an open source implementation1 of a neural language model for machine translation. Neural language models deal with the problem of data sparsity by learning distributed representations for words in a continuous vector space. The language modelling probabilities are estimated by projecting a word's context in the same space as the word representations and by assigning probabilities proportional to the distance between the words and the context's projection. Neural language models are notoriously slow to train and test. Our framework is designed with scalability in mind and provides two optional techniques for reducing the computational cost: the so-called class decomposition trick and a training algorithm based on noise contrastive estimation. Our models may be extended to incorporate direct n-gram features to learn weights for every n-gram in the training data. Our framework comes with wrappers for the cdec and Moses translation toolkits, allowing our language models to be incorporated as normalized features in their decoders (inside the beam search).


Author(s):  
Sho Takase ◽  
Jun Suzuki ◽  
Masaaki Nagata

This paper proposes a novel Recurrent Neural Network (RNN) language model that takes advantage of character information. We focus on character n-grams based on research in the field of word embedding construction (Wieting et al. 2016). Our proposed method constructs word embeddings from character ngram embeddings and combines them with ordinary word embeddings. We demonstrate that the proposed method achieves the best perplexities on the language modeling datasets: Penn Treebank, WikiText-2, and WikiText-103. Moreover, we conduct experiments on application tasks: machine translation and headline generation. The experimental results indicate that our proposed method also positively affects these tasks


2009 ◽  
Vol 35 (3) ◽  
pp. 345-397 ◽  
Author(s):  
Srinivas Bangalore ◽  
Michael Johnston

Multimodal grammars provide an effective mechanism for quickly creating integration and understanding capabilities for interactive systems supporting simultaneous use of multiple input modalities. However, like other approaches based on hand-crafted grammars, multimodal grammars can be brittle with respect to unexpected, erroneous, or disfluent input. In this article, we show how the finite-state approach to multimodal language processing can be extended to support multimodal applications combining speech with complex freehand pen input, and evaluate the approach in the context of a multimodal conversational system (MATCH). We explore a range of different techniques for improving the robustness of multimodal integration and understanding. These include techniques for building effective language models for speech recognition when little or no multimodal training data is available, and techniques for robust multimodal understanding that draw on classification, machine translation, and sequence edit methods. We also explore the use of edit-based methods to overcome mismatches between the gesture stream and the speech stream.


2020 ◽  
Vol 2020 (8) ◽  
pp. 188-1-188-7
Author(s):  
Xiaoyu Xiang ◽  
Yang Cheng ◽  
Jianhang Chen ◽  
Qian Lin ◽  
Jan Allebach

Image aesthetic assessment has always been regarded as a challenging task because of the variability of subjective preference. Besides, the assessment of a photo is also related to its style, semantic content, etc. Conventionally, the estimations of aesthetic score and style for an image are treated as separate problems. In this paper, we explore the inter-relatedness between the aesthetics and image style, and design a neural network that can jointly categorize image by styles and give an aesthetic score distribution. To this end, we propose a multi-task network (MTNet) with an aesthetic column serving as a score predictor and a style column serving as a style classifier. The angular-softmax loss is applied in training primary style classifiers to maximize the margin among classes in single-label training data; the semi-supervised method is applied to improve the network’s generalization ability iteratively. We combine the regression loss and classification loss in training aesthetic score. Experiments on the AVA dataset show the superiority of our network in both image attributes classification and aesthetic ranking tasks.


2018 ◽  
Author(s):  
Roman Zubatyuk ◽  
Justin S. Smith ◽  
Jerzy Leszczynski ◽  
Olexandr Isayev

<p>Atomic and molecular properties could be evaluated from the fundamental Schrodinger’s equation and therefore represent different modalities of the same quantum phenomena. Here we present AIMNet, a modular and chemically inspired deep neural network potential. We used AIMNet with multitarget training to learn multiple modalities of the state of the atom in a molecular system. The resulting model shows on several benchmark datasets the state-of-the-art accuracy, comparable to the results of orders of magnitude more expensive DFT methods. It can simultaneously predict several atomic and molecular properties without an increase in computational cost. With AIMNet we show a new dimension of transferability: the ability to learn new targets utilizing multimodal information from previous training. The model can learn implicit solvation energy (like SMD) utilizing only a fraction of original training data, and archive MAD error of 1.1 kcal/mol compared to experimental solvation free energies in MNSol database.</p>


Sign in / Sign up

Export Citation Format

Share Document