scholarly journals Detachable Robotic Grippers for Human-Robot Collaboration

2021 ◽  
Vol 8 ◽  
Author(s):  
Zubair Iqbal ◽  
Maria Pozzi ◽  
Domenico Prattichizzo ◽  
Gionata Salvietti

Collaborative robots promise to add flexibility to production cells thanks to the fact that they can work not only close to humans but also with humans. The possibility of a direct physical interaction between humans and robots allows to perform operations that were inconceivable with industrial robots. Collaborative soft grippers have been recently introduced to extend this possibility beyond the robot end-effector, making humans able to directly act on robotic hands. In this work, we propose to exploit collaborative grippers in a novel paradigm in which these devices can be easily attached and detached from the robot arm and used also independently from it. This is possible only with self-powered hands, that are still quite uncommon in the market. In the presented paradigm not only hands can be attached/detached to/from the robot end-effector as if they were simple tools, but they can also remain active and fully functional after detachment. This ensures all the advantages brought in by tool changers, that allow for quick and possibly automatic tool exchange at the robot end-effector, but also gives the possibility of using the hand capabilities and degrees of freedom without the need of an arm or of external power supplies. In this paper, the concept of detachable robotic grippers is introduced and demonstrated through two illustrative tasks conducted with a new tool changer designed for collaborative grippers. The novel tool changer embeds electromagnets that are used to add safety during attach/detach operations. The activation of the electromagnets is controlled through a wearable interface capable of providing tactile feedback. The usability of the system is confirmed by the evaluations of 12 users.

Author(s):  
Michael John Chua ◽  
Yen-Chen Liu

Abstract This paper presents cooperation and null-space control for networked mobile manipulators with high degrees of freedom (DOFs). First, kinematic model and Euler-Lagrange dynamic model of the mobile manipulator, which has an articulated robot arm mounted on a mobile base with omni-directional wheels, have been presented. Then, the dynamic decoupling has been considered so that the task-space and the null-space can be controlled separately to accomplish different missions. The motion of the end-effector is controlled in the task-space, and the force control is implemented to make sure the cooperation of the mobile manipulators, as well as the transportation tasks. Also, the null-space control for the manipulator has been combined into the decoupling control. For the mobile base, it is controlled in the null-space to track the velocity of the end-effector, avoid other agents, avoid the obstacles, and move in a defined range based on the length of the manipulator without affecting the main task. Numerical simulations have been addressed to demonstrate the proposed methods.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4863-4871
Author(s):  
MILAN MIHOLA ◽  
◽  
ZDENEK ZEMAN ◽  
DAVID FOJTIK ◽  
◽  
...  

The design of the arms of industrial robots and manipulators is a demanding process both in terms of expertise and in terms of the time required. For these reasons, algorithms have been created, with the help of which it is possible to design cross-sections of individual arms of robots and manipulators not only from the point of view of maximum allowed deflection but also from the point of view of minimizing cross-sectional dimensions or minimizing the weight of arms. These algorithms were subsequently used in the development of the software tool RobotArmDesign, with the help of which it is possible to simplify and shorten the arm design process significantly. This tool also has a connection to the SolidWorks CAD system and its simulation tools through its API interface, making it possible to refine robot arms designs while maintaining significantly shorter design times than would be the case with commonly used procedures. This tool's capabilities were demonstrated in the design of a robot arm with an angular structure and five degrees of freedom.


Author(s):  
Aravinthkumar T ◽  
Suresh M ◽  
Vinod B

The abstract must be a precise and reflection of what is in your article. Manufacturing sector is moving towards industry 4.0 and demands a high end of automation in the process. In which industrial robots play a fundamental role for automating the processes such as pick and place, material handling, palletizing, welding, painting, assembly lines and many more endless applications. Increasing demand and necessity made more research on industrial robots, machine learning and artificial intelligence. Better kinematic analysis of robots leads to reliable, high precise and fast responsive system. But there is an absence of India based robot manufacturers to fulfil the rising demand. Again, this situation leads to a market for foreign robot makers instead of local players. Lack of knowledge in robotics, unavailability of robot parts and resources are pain points for this cause. As researchers in this domain and have a goal to resolve this issue by providing open source, easily accessible industrial robot technical resources to everyone. This research work focuses the design and development of 6 Degrees of Freedom articulated robot arm with kinematic analysis particularly forward and inverse kinematics.


Author(s):  
Milan Mihola ◽  
Zdenek Zeman ◽  
David Fojtik

<p>The design of the arms of industrial robots and manipulators is a demanding process both in ter ms of expertise and in terms of the time required. For these reasons, algorithms have been created, with the help of which it is possible to design cross - sections of individual arms of robots and manipulators not only from the point of view of maximum allo wed deflection but also from the point of view of minimizing cross - sectional dimensions or minimizing the weight of arms. These algorithms were subsequently used in the development of the software tool RobotArmDesign, with the help of which it is possible to simplify and shorten the arm design process significantly. This tool also has a connection to the SolidWorks CAD system and its simulation tools through its API interface, making it possible to refine robot arms designs while maintaining significantly s horter design times than would be the case with commonly used procedures. This tool's capabilities were demonstrated in the design of a robot arm with an angular structure and five degrees of freedom.</p>


Author(s):  
Ahmad A. Smaili

Abstract A robomech is a crossbreed of a mechanism and a robot arm. It has a parallel architecture equipped with more than one end effector to accomplish tasks that require the coordination of many functions. Robomechs with multi degrees of freedom that are based on the 4R and 5R chains have found their way into the literature. This article presents a new, two-degree of freedom robomech whose architecture is based on the 7R chain. The robomech is capable of performing two-function tasks. The features, kinematic constraints, and synthesis procedure of the robomech are outlined and an application example is given.


Author(s):  
Celeste Colberg Poley ◽  
Balakumar Balachandran

Medical robots are increasingly being used to assist surgeons during procedures requiring precision. As reported in the literature, surgeons have been opting for minimally invasive surgery, as it reduces patient complications, overall patient recovery time, and hospital time for the patient. Robotic manipulators can be used to overcome natural limitations related to vision and human dexterity, and allow surgeons to transcend these limitations without having to sacrifice improvement in patient outcome. A desirable attribute of surgical robots is maneuverability similar to the human arm. The KUKA DLR Lightweight Robot Arm (LWR), with seven degrees of freedom, retains many of these human-like dexterity traits. Due to the KUKA robot arms maneuverability and flexibility, it is well-suited for intricate tasks based upon motion analyses and modeling of the compliance to path trajectory in addition to the overall smoothness of the path. This robot may be further programmed to be effective and precise for surgical applications. In the studies reported here, a unique Rapidly exploring Randomized Tree (RRT) based path-planning algorithm is developed and this algorithm is used to generate path plans between an initial state and a goal state for simulated models of robotic manipulator arms. Along with constraints, the RRT algorithm has been implemented to find paths for the chosen kinematic or dynamic robotic manipulator arm. Similar techniques are to be used to analyze the KUKA LWR IV+ system. Motion analyses have been carried out with consideration of motion trajectories and all possible locations of the end effector with unique constraints applied to the system. In these simulations, the Denavit-Hartenberg parameters were recorded, with special attention to movement restrictions. The results of the RRT paths generation, analysis of the manipulator arm trajectories, and simulations allow one to better determine the location of the end-effector at any given point in time and location. From this foundation, the generation of path-planning restrictions for the KUKA robots path programming is expected to take into account surgically restricted dangerous or undesirable zones. In future work, the trajectories of the KUKA robot and other manipulator arms are to be compared with the data available in the literature. This work holds promising implications for the improved use of such robot systems in surgical applications. For example, precise pre-programmed robotic movements are expected to be particularly helpful for surgeries in tight, anatomically restricted sites, with adjacent delicate tissues. Ultimately, it is expected that this type of novel robotic application will greatly aid surgeons in improving the precision and safety of surgical procedures, by reducing potential complications and minimizing potential nicks and tears, and working towards giving the surgeons the same ease that they have with traditional surgery.


Robotics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 80 ◽  
Author(s):  
Doria ◽  
Cocuzza ◽  
Comand ◽  
Bottin ◽  
Rossi

In robotic processes, the compliance of the robot arm plays a very important role. In some conditions, for example, in robotic assembly, robot arm compliance can compensate for small position and orientation errors of the end-effector. In other processes, like machining, robot compliance may generate chatter vibrations with an impairment in the quality of the machined surface. In industrial robots, the compliance of the end-effector is chiefly due to joint compliances. In this paper, joint compliances of a serial six-joint industrial robot are identified with a novel modal method making use of specific modes of vibration dominated by the compliance of only one joint. Then, in order to represent the effect of the identified compliances on robot performance in an intuitive and geometric way, a novel kinematic method based on the concept of “Mozzi axis” of the end-effector is presented and discussed.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Kevin Yu ◽  
Thomas Wegele ◽  
Daniel Ostler ◽  
Dirk Wilhelm ◽  
Hubertus Feußner

AbstractTelemedicine has become a valuable asset in emergency responses for assisting paramedics in decision making and first contact treatment. Paramedics in unfamiliar environments or time-critical situations often encounter complications for which they require external advice. Modern ambulance vehicles are equipped with microphones, cameras, and vital sensors, which allow experts to remotely join the local team. However, the visual channels are rarely used since the statically installed cameras only allow broad views at the patient. They neither allow a close-up view nor a dynamic viewpoint controlled by the remote expert. In this paper, we present EyeRobot, a concept which enables dynamic viewpoints for telepresence using the intuitive control of the user’s head motion. In particular, EyeRobot utilizes the 6 degrees of freedom pose estimation capabilities of modern head-mounted displays and applies them in real-time to the pose of a robot arm. A stereo-camera, installed on the end-effector of the robot arm, serves as the eyes of the remote expert at the local site. We put forward an implementation of EyeRobot and present the results of our pilot study which indicates its intuitive control.


Author(s):  
Guillaume Jeanneau ◽  
Vincent Bégoc ◽  
Sébastien Briot

Abstract This paper introduces a geometrico-static analysis of an intrinsically safe parallel manipulator called R-Min. This robot was designed to reduce the risk of injury during a collision with a human operator, thanks to an underactuated architecture which enables large internal displacements in case of a collision. Indeed, the R-Min architecture is based on a modification of the well-known planar five-bar mechanism, where additional passive joints are introduced on the distal links in order to create a planar seven-bar mechanism with two degrees of underactuation. These two additional degrees of freedom are passively driven through the use of a supplementary passive leg, in which a tension spring is mounted between the base and the end-effector. In this paper, the conditions satisfying the equilibrium and the stability of the mechanism are introduced, based on a geometrico-static analysis. The direct and inverse problems are then solved using a numerical approach. Solutions to both problems are presented and classified. One subset of solutions to the inverse problem is isolated and projected in the Cartesian space in order to obtain the payload-invariant workspace of the R-Min robot.


Machines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 132
Author(s):  
Sergio Tadeu Almeida ◽  
John Mo ◽  
Cees Bil ◽  
Songlin Ding ◽  
Xiangzhi Wang

Exotic materials such as titanium offer superior characteristics that, paradoxically, make them hard-to-cut by conventional machining. As a solution, electric discharge machining (EDM) stands out as a non-conventional process able to cut complex profiles from hard-to-cut materials, delivering dimensional accuracy and a superior surface. However, EDM is embodied in CNC machines with a reduced axis and machining envelope, which constrains design freedom in terms of size and shape. To overcome these CNC constraints, traditional machining using six-axis industrial robots have become a prominent research field, and some applications have achieved cost efficiency, an improved envelope, and high flexibility. However, due to the lack of stiffness and strength of the robot arm, accuracy, material rate removal, and surface finishing are not comparable to CNC machining. Therefore, the present study investigates the design of a novel WEDM combined with six-axis robotic machining to overcome the limitations of traditional robotic machining and enhance EDM applications. This study extends the work of a conference paper to confirm potential outcomes, quantifying and ranking undesired interactions to map technical problems and applying the TRIZ approach to trigger solutions. Finally, an effective robotic end-effector design is proposed to free EDM from CNC and deliver robotic machining as a flexible and accurate machining system for exotic materials.


Sign in / Sign up

Export Citation Format

Share Document