scholarly journals Quantification of Non-linearities in the Consequential Life Cycle Assessment of the Use Phase of Battery Electric Vehicles

2021 ◽  
Vol 2 ◽  
Author(s):  
Davide Rovelli ◽  
Simone Cornago ◽  
Pietro Scaglia ◽  
Carlo Brondi ◽  
Jonathan Sze Choong Low ◽  
...  

The diffusion of Battery Electric Vehicles (BEVs) is projected to influence the electricity grid operation, potentially offering opportunities for load-shifting policies aimed at higher integration of renewable energy technologies in the electricity system. Moreover, the examined literature emphasizes electricity as a relevant driver of BEVs Life Cycle Assessment (LCA) results. To evaluate LCA impacts associated to future BEVs diffusion scenarios in Italy, we adopt the Consequential Life Cycle Assessment (CLCA) methodology. LCA conventionally assumes a proportional relation between environmental impact indicators and the functional unit. However, such relation may not be representative if the electricity system is significantly affected by the large-scale diffusion of BEVs. Our study couples the conventional CLCA methodology with the EnergyPLAN model through three different approaches, which progressively include BEV-specific dynamics, to capture correlations between additional BEVs fleets and the electricity grid operation, that affectthe mix of electricity consumed in the use phase by BEVs, in Italy in 2030. Here we show that if renewables capacity is not additionally installed in response to additional BEVs electricity demand, the marginal Climate change total indicator of BEVs may increase up to ~40%, with respect to a business-as-usual scenario. Moreover, we quantitatively support the literature indications on how to properly estimate BEVs LCA impacts. Indeed, we weight electricity LCA impacts on hourly BEV charge profiles, finding that this approach best captures BEVs interdependence with the electricity system. At low BEVs diffusion, this approach clearly shows the potential BEVs capability to increase exploitation of renewable energy, whereas at high BEVs diffusion, it fully highlights potential responses of fossil fuel power plants to additional electricity demand. Due to these dynamics, we find that linearly scaling the business-as-usual scenario results would lead to an underestimation of 12.45 Mton CO2-eq of the total impacts of an additional BEVs fleet, under a 100% BEV diffusion scenario. Our methodology could be replicated with different energy system models, or at various geographical scales. Our framework could be coupled with comprehensive assessments of transport systems, to further provide robustness to policymakers by including non-linearities in the mix of electricity consumed during the use phase of BEVs.

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6508
Author(s):  
Mona Kabus ◽  
Lars Nolting ◽  
Benedict J. Mortimer ◽  
Jan C. Koj ◽  
Wilhelm Kuckshinrichs ◽  
...  

We investigate the environmental impacts of on-board (based on alternating current, AC) and off-board (based on direct current, DC) charging concepts for electric vehicles using Life Cycle Assessment and considering a maximum charging power of 22 kW (AC) and 50 kW (DC). Our results show that the manufacturing of chargers provokes the highest contribution to environmental impacts of the production phase. Within the chargers, the filters could be identified as main polluters for all power levels. When comparing the results on a system level, the DC system causes less environmental impact than the AC system in all impact categories. In our diffusion scenarios for electric vehicles, annual emission reductions of up to 35 million kg CO2-eq. could be achieved when the DC system is used instead of the AC system. In addition to the environmental assessment, we examine economic effects. Here, we find annual savings of up to 8.5 million euros, when the DC system is used instead of the AC system.


2019 ◽  
Vol 11 (20) ◽  
pp. 5635 ◽  
Author(s):  
Wang ◽  
Zhou ◽  
Li ◽  
Wei

Due to the rapid growth in the total number of vehicles in China, energy consumption and environmental pollution are serious problems. The development of electric vehicles (EVs) has become one of the important measures for solving these problems. As EVs are in a period of rapid development, sustainability research on them is conducive to the timely discovery of—and solution to—problems in the development process, but current research on the sustainability of EVs is still scarce. Based on the strategic development direction of EVs in China, battery electric vehicles (BEVs) were chosen as the research object of this study. The theory and method of the life cycle sustainability assessment (LCSA) were used to study the sustainability of BEVs. Specifically, the indicators of the life cycle assessment (LCA) were constructed, and the GaBi software was used to assess the environmental dimensions. The framework of life cycle costing (LCC) was used to assess the economic dimensions from the perspective of consumers. The indicators of the social life cycle assessment (SLCA) of stakeholders were constructed to assess the social dimension. Then, the method of the technique for order preference by similarity to ideal solution (TOPSIS) was selected for multicriteria decision-making in order to integrate the three dimensions. A specific conclusion was drawn from a comparison of BEVs and internal combustion engine vehicles (ICEVs). The study found that the life cycle sustainability of ICEVs in China was better than that of BEVs. This result might be unexpected, but there were reasons for it. Through sensitivity analysis, it was concluded that the current power structure and energy consumption in the operation phase of BEVs had a higher environmental impact, and the high cost of batteries and the government subsidy policy had a higher impact on the cost of BEVs. Corresponding suggestions are put forward at the end of the article.


2020 ◽  
Vol 12 (23) ◽  
pp. 10037
Author(s):  
Malte Scharf ◽  
Ludger Heide ◽  
Alexander Grahle ◽  
Anne Magdalene Syré ◽  
Dietmar Göhlich

In 2020, vehicle sales decreased dramatically due to the COVID-19 pandemic. Therefore, several voices have demanded a vehicle subsidy similar to the “environmental subsidy” in Germany in 2009. The ecological efficiency of vehicle subsidies is controversially discussed. This paper establishes a prognosis of the long-term environmental impacts of various car subsidy concepts. The CO2 emissions of the German car fleet impacted by the purchase subsidies are determined. A balance model of the CO2 emissions of the whole car life cycle is developed. The implementation of different subsidy scenarios directly affects the forecasted composition of the vehicle population and, therefore, the resulting life-cycle assessment. All scenarios compensate the additional emissions required by the production pull-in within the considered period and, hence, reduce the accumulated CO2 emissions until 2030. In the time period 2019–2030 and for a total number of 0.72 million subsidized vehicles—compensating the decrease due to the COVID-19 pandemic—savings of between 1.31 and 7.56 million t CO2 eq. are generated compared to the scenario without a subsidy. The exclusive funding of battery electric vehicles (BEVs) is most effective, with an ecological break-even in 2025.


2015 ◽  
Vol 21 (1) ◽  
pp. 134-135 ◽  
Author(s):  
Anders Nordelöf ◽  
Maarten Messagie ◽  
Anne-Marie Tillman ◽  
Maria Ljunggren Söderman ◽  
Joeri Van Mierlo

2014 ◽  
Vol 918 ◽  
pp. 121-126
Author(s):  
Zhe Liu ◽  
Wei Hua Zeng

Electric vehicles have been gaining increasing worldwide attention as a promising potential long-term solution to sustainable personal mobility in recent years; in particular, battery electric vehicles (BEVs) offering zero tailpipe emissions are favored by a significant number of people in China. However, their true ability of contribution to greenhouse gas (GHG) emissions reductions is invisible. This paper assessed their environmental impacts from the perspective of life cycle. Life cycle assessment is used as the analyzing method and eBlance is applied as a tool to identify the impacts quantitatively.


2015 ◽  
pp. 89-94
Author(s):  
Yaowei Zhang ◽  
Yanfen Liao ◽  
Guicai Liu ◽  
Shanchao Hu ◽  
Xiaoqian Ma ◽  
...  

2014 ◽  
Vol 19 (11) ◽  
pp. 1866-1890 ◽  
Author(s):  
Anders Nordelöf ◽  
Maarten Messagie ◽  
Anne-Marie Tillman ◽  
Maria Ljunggren Söderman ◽  
Joeri Van Mierlo

Sign in / Sign up

Export Citation Format

Share Document