scholarly journals Paving the Way for Circular Supply Chains: Conceptualization of a Circular Supply Chain Maturity Framework

2021 ◽  
Vol 2 ◽  
Author(s):  
Laura Montag ◽  
Timo Klünder ◽  
Marion Steven

The European Green Deal aims to make Europe climate neutral by 2050. According to this ambitious plan, 50% of greenhouse gas emissions are to be saved through a wide implementation of a circular economy. With supply chains responsible for four-fifths of greenhouse gas emissions, their role in the transition from linearity to a circular economy, and thus in the successful implementation of circular systems, is critical and requires the attention of academia, policymakers, and practitioners. Maturity models are suitable for monitoring, assessing, and evaluating the transformation process and determining the status quo of a supply chain. However, as the implementation of circular supply chains is still in its infancy, circular maturity frameworks at the supply chain level are not available yet. Therefore, the purpose of this study is to conceptualize a framework for analyzing the maturity level of circular economy adoption in the supply chain context. From an extensive and systematic literature review of overall 1,372 articles on supply chains, circular economy and maturity the following findings can be drawn: (i) circular economy and circular supply chains are massively growing research streams; (ii) the link between circular economy, supply chains and maturity assessment is so far missing; (iii) three constructs (organization, products, processes) characterize and influence circular supply chain maturity; (iv) a 3-layered maturity grid covering six archetypal elements of the circular economy enables the assessment of a circular supply chain maturity. The developed circular supply chain maturity framework paves the way for circular economy adoption at supply chain level by understanding current level of circular maturity and thus supporting the circular economy implementation process at supply chain level.

Author(s):  
Rekich R. Pahunang ◽  
Antonio Buonerba ◽  
Vincenzo Senatore ◽  
Giuseppina Oliva ◽  
Mariam Ouda ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3504
Author(s):  
Blanka Tundys ◽  
Tomasz Wiśniewski

The aim of the study was to analyze emissions in the supply chain and to identify, based on a literature analysis, which supply chain strategies could contribute to reducing these emissions. A broad spectrum of new supply chain strategy solutions was identified and, based on simulations of selected products, conclusions were drawn and the advantages and disadvantages of theoretical solutions were presented for individual cases. A critical analysis of the literature and simulation methods were used to illustrate the problem presented in this paper, to identify the factors causing greenhouse gas emissions and to draw conclusions in the form of proposals to redesign existing strategies, considering the factors determining the increase in pollution caused by the performed logistics processes. The results of the simulations and the literature analysis indicate that solutions related to the redesign of strategies must consider the specificity of the product and the nature of the chain. Not all proposed strategies are applicable to all chains, and each new strategy must be carefully considered and consider many factors. An important element to reduce the negative environmental impact of chains is a well-thought-out relationship with suppliers, a well-chosen and adapted logistics infrastructure, including means of transport. The presented solutions clearly indicate that the environmental aspect plays an increasingly important role in chain management and influences the applied chain strategies. However, reducing the environmental impact of a chain is not a revolutionary approach and an easy-to-implement strategy change, but a well-thought-out, long-term process that considers the specifics of the products, the possibilities of alternative sourcing and distribution modes, and the need to invest in logistics infrastructure to make it as environmentally neutral as possible.


2017 ◽  
Vol 13 (4) ◽  
pp. 325-331
Author(s):  
Tatsuya WADAGUCHI ◽  
Takamichi OCHI ◽  
Sayaka OGA ◽  
Issui IHARA ◽  
Shoichiro TSURUTA ◽  
...  

Author(s):  
Thumrongrut Mungcharoen ◽  
Viganda Varabuntoonvit ◽  
Nongnuch Poolsawad

AJIL Unbound ◽  
2018 ◽  
Vol 112 ◽  
pp. 279-284 ◽  
Author(s):  
Daniel C. Esty ◽  
Dena P. Adler

After more than two decades of inadequate international efforts to address climate change resulting from rising greenhouse gas emissions, the 2015 Paris Climate Change Agreement shifted gears. That agreement advances a “bottom-up” model of global cooperation that requires action commitments from all national governments and acknowledges the important role that cities, states, provinces, and businesses must play in delivering deep decarbonization. Given the limited control that presidents and prime ministers have over many of the policies and choices that determine their countries’ carbon footprints, the Paris Agreement missed an opportunity to formally recognize the climate change action commitments of mayors, governors, and premiers. These subnational officials often have authorities complementary to national governments, particularly in federal systems (including the United States, China, Canada, and Australia). They therefore possess significant independent capacities to reduce greenhouse gas emissions through their economic development strategies, building codes, zoning rules and practices, public transportation investments, and other policies. Likewise, the world community missed an opportunity to formally recognize the commitments of companies to successful implementation of the Paris Agreement and thereby to highlight the wide range of decisions that business leaders make that significantly affect greenhouse gas emissions.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2739 ◽  
Author(s):  
Grusche J. Seithe ◽  
Alexandra Bonou ◽  
Dimitrios Giannopoulos ◽  
Chariklia A. Georgopoulou ◽  
Maria Founti

A “Well-to-Propeller” Life Cycle Assessment of maritime transport was performed with a European geographical focus. Four typical types of vessels with specific operational profiles were assessed: a container vessel and a tanker (both with 2-stroke engines), a passenger roll-on/roll-off (Ro-Pax) and a cruise vessel (both with 4-stroke engines). All main engines were dual fuel operated with Heavy Fuel Oil (HFO) or Liquefied Natural Gas (LNG). Alternative onshore and offshore fuel supply chains were considered. Primary energy use and greenhouse gas emissions were assessed. Raw material extraction was found to be the most impactful life cycle stage (~90% of total energy use). Regarding greenhouse gases, liquefaction was the key issue. When transitioning from HFO to LNG, the systems were mainly influenced by a reduction in cargo capacity due to bunkering requirements and methane slip, which depends on the fuel supply chain (onshore has 64% more slip than offshore) and the engine type (4-stroke engines have 20% more slip than 2-stroke engines). The combination of alternative fuel supply chains and specific operational profiles allowed for a complete system assessment. The results demonstrated that multiple opposing drivers affect the environmental performance of maritime transport, a useful insight towards establishing emission abatement strategies.


Sign in / Sign up

Export Citation Format

Share Document