scholarly journals The Seasonal Snowfall Contributions of Different Snowstorm Types in Central New York State

2021 ◽  
Vol 3 ◽  
Author(s):  
Justin J. Hartnett

Located at the eastern extent of the Great Lakes snowbelt, Central New York averages some of the highest annual snowfall totals east of the Rocky Mountains. This is in large part due to the variety of snowstorms that affect the region including lake-effect storms, coastal storms, and overrunning storms. Previous estimates suggest that lake-effect snowstorms account for approximately half of the seasonal snow in the Great Lakes basin, but ignore the spatial variability that exists within the region. Therefore, this study examines the seasonal snowfall contributions of the different snowstorm types to affect Central New York. Results suggest that although lake-effect snowstorms are the dominant snowstorm type in the region, their seasonal snowfall contributions vary between 13 and 48%. Although lake-effect snowstorms produce more snow during the peak and mid-seasons, their relative contribution is greatest during the early and mid-winter seasons. Generally, higher contributions occur near the Tug Hill Plateau, with lower contributions in southern Central New York. Instead, snowfall in southern Central New York is mostly dominated by Nor'easters (16–35%), with lesser contributions from Rocky lows (14–29%). Overrunning storms that originate in Canada (e.g., Alberta clippers) and non-cyclonic storms contribute the least to seasonal snowfall totals across Central New York; however, they are often the catalyst for lake-effect snowstorms in the region, as they advect continental polar air masses that destabilize across the lake. Understanding the actual snowfall contribution from different snowstorm types is needed for future climate predictions. Since the potential trajectory of future snowfall varies according to the type of storm, climate models must accurately predict the type of storm that is producing the snow.

2014 ◽  
Vol 53 (12) ◽  
pp. 2685-2697 ◽  
Author(s):  
Justin J. Hartnett ◽  
Jennifer M. Collins ◽  
Martin A. Baxter ◽  
Don P. Chambers

AbstractCentral New York State, located at the intersection of the northeastern United States and the Great Lakes basin, is impacted by snowfall produced by lake-effect and non-lake-effect snowstorms. The purpose of this study is to determine the spatiotemporal patterns of snowfall in central New York and their possible underlying causes. Ninety-three Cooperative Observer Program stations are used in this study. Spatiotemporal patterns are analyzed using simple linear regressions, Pearson correlations, principal component analysis to identify regional clustering, and spatial snowfall distribution maps in the ArcGIS software. There are three key findings. First, when the long-term snowfall trend (1931/32–2011/12) is divided into two halves, a strong increase is present during the first half (1931/32–1971/72), followed by a lesser decrease in the second half (1971/72–2011/12). This result suggests that snowfall trends behave nonlinearly over the period of record. Second, central New York spatial snowfall patterns are similar to those for the whole Great Lakes basin. For example, for five distinct regions identified within central New York, regions closer to and leeward of Lake Ontario experience higher snowfall trends than regions farther away and not leeward of the lake. Third, as compared with precipitation totals (0.02), average air temperatures had the largest significant (ρ < 0.05) correlation (−0.56) with seasonal snowfall totals in central New York. Findings from this study are valuable because they provide a basis for understanding snowfall patterns in a region that is affected by both non-lake-effect and lake-effect snowstorms.


2009 ◽  
Vol 48 (4) ◽  
pp. 873-886 ◽  
Author(s):  
Neil Laird ◽  
Ryan Sobash ◽  
Natasha Hodas

Abstract This study presents a climatological analysis of the frequency and characteristics of lake-effect precipitation events that were initiated or enhanced by lakes within the New York State (NYS) Finger Lakes region for the 11 winters (October–March) from 1995/96 through 2005/06. Weather Surveillance Radar-1988 Doppler (WSR-88D) data from Binghamton, New York, were used to identify 125 lake-effect events. Events occurred as 1) a well-defined, isolated precipitation band over and downwind of a lake, 2) an enhancement of mesoscale lake-effect precipitation originating from Lake Ontario and extending southward over an individual Finger Lake, 3) a quasi-stationary mesoscale precipitation band positioned over a lake embedded within extensive regional precipitation from a synoptic weather system, or 4) a transition from one type to another. Results show that lake-effect precipitation routinely develops over lakes that are considerably smaller than lakes previously discussed as being associated with lake-effect precipitation, such as the Great Lakes. Lake-effect events occurred during each month (October–March) across the 11 winters studied and were identified in association with each of the six easternmost Finger Lakes examined in this study. The frequency of NYS Finger Lakes lake-effect events determined in the current investigation paired with subsequent analyses of the environmental conditions leading to these events will allow for 1) comparative analyses of necessary conditions for lake-effect development across a range of lake sizes (e.g., NYS Finger Lakes, Lake Champlain, Great Salt Lake, and Great Lakes) and 2) an informative examination of the connection between mesoscale processes and climate variability.


1983 ◽  
Vol 4 (2) ◽  
pp. 127-139 ◽  
Author(s):  
Richard Michael Gramly

A trench excavated into the waterlogged fringe of the Lamoka Lake site in central New York state yielded cultural stratigraphic zones with abundant artifacts and food remains. A peaty layer resting upon Late Archaic beach or streamside deposits produced late Middle Woodland (Kipp Island phase) ceramics and stone implements. Discoveries of wood, fruit pits, and nuts in the same layer as well as rich congeries of animal bones indicate that the archaeological potential of the Lamoka Lake site is not exhausted.


2007 ◽  
Vol 22 (4) ◽  
pp. 839-852 ◽  
Author(s):  
Rodger A. Brown ◽  
Thomas A. Niziol ◽  
Norman R. Donaldson ◽  
Paul I. Joe ◽  
Vincent T. Wood

Abstract During the winter, lake-effect snowstorms that form over Lake Ontario represent a significant weather hazard for the populace around the lake. These storms, which typically are only 2 km deep, frequently can produce narrow swaths (20–50 km wide) of heavy snowfall (2–5 cm h−1 or more) that extend 50–75 km inland over populated areas. Subtle changes in the low-altitude flow direction can mean the difference between accumulations that last for 1–2 h and accumulations that last 24 h or more at a given location. Therefore, it is vital that radars surrounding the lake are able to detect the presence and strength of these shallow storms. Starting in 2002, the Canadian operational radars on the northern side of the lake at King City, Ontario, and Franktown, Ontario, began using elevation angles of as low as −0.1° and 0.0°, respectively, during the winter to more accurately estimate snowfall rates at the surface. Meanwhile, Weather Surveillance Radars-1988 Doppler in New York State on the southern and eastern sides of the lake—Buffalo (KBUF), Binghamton (KBGM), and Montague (KTYX)—all operate at 0.5° and above. KTYX is located on a plateau that overlooks the lake from the east at a height of 0.5 km. With its upward-pointing radar beams, KTYX’s detection of shallow lake-effect snowstorms is limited to the eastern quarter of the lake and surrounding terrain. The purpose of this paper is to show—through simulations—the dramatic increase in snowstorm coverage that would be possible if KTYX were able to scan downward toward the lake’s surface. Furthermore, if KBUF and KBGM were to scan as low as 0.2°, detection of at least the upper portions of lake-effect storms over Lake Ontario and all of the surrounding land area by the five radars would be complete. Overlake coverage in the lower half (0–1 km) of the typical lake-effect snowstorm would increase from about 40% to about 85%, resulting in better estimates of snowfall rates in landfalling snowbands over a much broader area.


1993 ◽  
Vol 5 (2) ◽  
pp. 179-187 ◽  
Author(s):  
R.F. Kopp ◽  
E.H. White ◽  
L.P. Abrahamson ◽  
C.A. Nowak ◽  
L. Zsuffa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document