scholarly journals Planetary Mass Spectrometry for Agnostic Life Detection in the Solar System

Author(s):  
Luoth Chou ◽  
Paul Mahaffy ◽  
Melissa Trainer ◽  
Jennifer Eigenbrode ◽  
Ricardo Arevalo ◽  
...  

For the past fifty years of space exploration, mass spectrometry has provided unique chemical and physical insights on the characteristics of other planetary bodies in the Solar System. A variety of mass spectrometer types, including magnetic sector, quadrupole, time-of-flight, and ion trap, have and will continue to deepen our understanding of the formation and evolution of exploration targets like the surfaces and atmospheres of planets and their moons. An important impetus for the continuing exploration of Mars, Europa, Enceladus, Titan, and Venus involves assessing the habitability of solar system bodies and, ultimately, the search for life—a monumental effort that can be advanced by mass spectrometry. Modern flight-capable mass spectrometers, in combination with various sample processing, separation, and ionization techniques enable sensitive detection of chemical biosignatures. While our canonical knowledge of biosignatures is rooted in Terran-based examples, agnostic approaches in astrobiology can cast a wider net, to search for signs of life that may not be based on Terran-like biochemistry. Here, we delve into the search for extraterrestrial chemical and morphological biosignatures and examine several possible approaches to agnostic life detection using mass spectrometry. We discuss how future missions can help ensure that our search strategies are inclusive of unfamiliar life forms.

2021 ◽  
Vol 9 ◽  
Author(s):  
Chang Li ◽  
Shiying Chu ◽  
Siyuan Tan ◽  
Xinchi Yin ◽  
You Jiang ◽  
...  

Mass spectrometry (MS) is one of the most widely used analytical techniques in many fields. Recent developments in chemical and biological researches have drawn much attention to the measurement of substances with low abundances in samples. Continuous efforts have been made consequently to further improve the sensitivity of MS. Modifications on the mass analyzers of mass spectrometers offer a direct, universal and practical way to obtain higher sensitivity. This review provides a comprehensive overview of the latest developments in mass analyzers for the improvement of mass spectrometers’ sensitivity, including quadrupole, ion trap, time-of-flight (TOF) and Fourier transform ion cyclotron (FT-ICR), as well as different combinations of these mass analyzers. The advantages and limitations of different mass analyzers and their combinations are compared and discussed. This review provides guidance to the selection of suitable mass spectrometers in chemical and biological analytical applications. It is also beneficial to the development of novel mass spectrometers.


2008 ◽  
Vol 14 (2) ◽  
pp. 56-67
Author(s):  
Ya.S. Yatskiv ◽  
◽  
A.P. Vidmachenko ◽  
O.V. Morozhenko ◽  
M.G. Sosonkin ◽  
...  

2013 ◽  
Vol 5 (1) ◽  
Author(s):  
Lily M.G. Panggabean ◽  
Abdullah Rasyid ◽  
Zarrah Duniani ◽  
Yana Meliana ◽  
Indah Kurniasih

Trigliceride or triacylglicerol (TAG) composition in crude oil of sixteen strain of marine diatom has been detected by spectra analyses on an Electrospray - Ion Trap – Mass Spectrometry (ESI-IT-MS) HCT Bruker-Daltonic GmbH instrument with AgNO3 used as coordination ionization agent. Biomass samples of each microalga strain were taken from early and late stationary cultures in f/2 enriched seawater and algal oils were extracted according to Bligh and Dyer. Results from spectra analysis showed that P-Pt-P (C16:0-C16:1-C16:0) were distinguished in TAG from diatom strains Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.1, Thalasiossira sp.2, Thalasiossira sp.3, Navicula sp. 1, Navicula sp. 2, Navicula sp. 3, Navicula sp. 4, Nitzschia sp. 2 and Amphora sp. In contrast, TAGs in Melosira sp. included P-P-P (C16:0-C16:0-C16:0) and P-P-O (C16:0-C16:0-C18:1) were identified. TAGs from Chaetoceros sp. were the most varies among samples, i.e. P-Pt-P (C16:0-C16:1-C16:0), A-P-M (C20:4-C16:0-C14:0), P-Pt-Lt (C16:0-C16:1-C18:3), P-Pt-A (C16:0-C16:1-C20:4), D-P-P (C22:6-C16:0-C16:0), A-Ln-P (C20:4-C18:2-C16:0). Various TAGs were also detected in Nitzschia sp.2, i.e. P-Pt-M (C16:0-C16:1-C14:0), P-Pt-P (C16:0-C16:1-C16:0), P-Pt-S (C16:0-C16:1-C18:0), P-Pt-A (C16:0-C16:1-C20:4). TAGs composition in Skeletonema strains that similar to those in Nitzschia sp.1 has longer carbon, i.e. P-P-O (C16:0-C16:0-C18:1), P-O-O (C16:0-C18:1-C18:1) and O-O-O (C18:1-C18:1-C18:1). TAGs with longer carbon chain and more double bond including highly unsaturated fatty acid C20:4 were increased with culture age in diatoms Chaetoceros sp.1, Chaetoceros sp.2, Thalasiossira sp.2, Navicula sp.1 and Nitzschia sp. 2.Keywords: diatom, TAG, ESI-IT-MS, f/2, early and late stationary


2013 ◽  
Vol 33 (10) ◽  
pp. 1108-1115
Author(s):  
Gao FANG ◽  
Peng ZHANG ◽  
Xiao-lan YE ◽  
Xia ZHU ◽  
Xin ZHAO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document