scholarly journals Collimation and Exposure Parameter Influence Image Quality and Potential Radiation Dose to the Eye Lens of Personnel in Computed Radiography of the Canine Pelvis

2021 ◽  
Vol 8 ◽  
Author(s):  
Malene Bisgaard ◽  
Fintan J. McEvoy ◽  
Dorte Hald Nielsen ◽  
Clara Allberg ◽  
Anna V. Müller ◽  
...  

Introduction: The purpose of this study was to evaluate the effect of collimation on image quality and radiation dose to the eye lenses of the personnel involved in computed radiography of the canine pelvis.Materials and Methods: A retrospective study of canine pelvic radiographs (N = 54) was undertaken to evaluate the relationship between image quality and the degree of field the collimation used. This was followed by a prospective cadaver study (N = 18) that assessed the effects on image quality and on scattered radiation dose of different collimation field areas and exposure parameters. All radiographs were analyzed for image quality using a Visual Grading Analysis (VGA) with three observers. Finally, the potential scattered radiation dose to the eye lens of personnel restraining a dog for pelvic radiographs was measured.Results: The retrospective study showed a slightly better (statistically non-significant) VGA score for the radiographs with optimal collimation. Spatial and contrast resolution and image sharpness showed the greatest improvement in response to minimizing the collimation field. The prospective study showed slightly better VGA scores (improved image quality) with the optimal collimation. Increasing the exposure factors especially the tube current and exposure time (mAs) resulted in improved low contrast resolution and less noise in the radiographs. The potential eye lens radiation dose increased by 14, 28, and 40% [default exposures, increased the tube peak potential (kVp), increased mAs, respectively] as a result of reduced collimation (increased beam size).Conclusion: The degree of collimation has no statistically significant on image quality in canine pelvic radiology for the range of collimation used but does have an impact on potential radiation dose to personnel in the x-ray room. With regard to radiation safety, increases in kVp are associated with less potential scatter radiation exposure compared to comparable increases in mAs.

2016 ◽  
Vol 58 (1) ◽  
pp. 53-61 ◽  
Author(s):  
Marie-Louise Aurumskjöld ◽  
Kristina Ydström ◽  
Anders Tingberg ◽  
Marcus Söderberg

Background The number of computed tomography (CT) examinations is increasing and leading to an increase in total patient exposure. It is therefore important to optimize CT scan imaging conditions in order to reduce the radiation dose. The introduction of iterative reconstruction methods has enabled an improvement in image quality and a reduction in radiation dose. Purpose To investigate how image quality depends on reconstruction method and to discuss patient dose reduction resulting from the use of hybrid and model-based iterative reconstruction. Material and Methods An image quality phantom (Catphan® 600) and an anthropomorphic torso phantom were examined on a Philips Brilliance iCT. The image quality was evaluated in terms of CT numbers, noise, noise power spectra (NPS), contrast-to-noise ratio (CNR), low-contrast resolution, and spatial resolution for different scan parameters and dose levels. The images were reconstructed using filtered back projection (FBP) and different settings of hybrid (iDose4) and model-based (IMR) iterative reconstruction methods. Results iDose4 decreased the noise by 15–45% compared with FBP depending on the level of iDose4. The IMR reduced the noise even further, by 60–75% compared to FBP. The results are independent of dose. The NPS showed changes in the noise distribution for different reconstruction methods. The low-contrast resolution and CNR were improved with iDose4, and the improvement was even greater with IMR. Conclusion There is great potential to reduce noise and thereby improve image quality by using hybrid or, in particular, model-based iterative reconstruction methods, or to lower radiation dose and maintain image quality.


Author(s):  
Sultan Aldosari ◽  
Zhonghua Sun

Background: The aim of this study is to perform a systematic review of the feasibility and clinical application of double low-dose CT pulmonary angiography (CTPA) in the diagnosis of patients with suspected pulmonary embolism. Discussion: A total of 13 studies were found to meet selection criteria reporting both low radiation dose (70 or 80 kVp versus 100 or 120 kVp) and low contrast medium dose CTPA protocols. Lowdose CTPA resulted in radiation dose reduction from 29.6% to 87.5% in 12 studies (range: 0.4 to 23.5 mSv), while in one study, radiation dose was increased in the dual-energy CT group when compared to the standard 120 kVp group. CTPA with use of low contrast medium volume (range: 20 to 75 ml) was compared to standard CTPA (range: 50 to 101 ml) in 12 studies with reduction between 25 and 67%, while in the remaining study, low iodine concentration was used with 23% dose reduction achieved. Quantitative assessment of image quality (in terms of signal-to-noise ratio and contrast-to-noise ratio) showed that low-dose CTPA was associated with higher, lower and no change in image quality in 3, 3 and 6 studies, respectively when compared to the standard CTPA protocol. The subjective assessment indicated similar image quality in 11 studies between low-dose and standard CTPA groups, and improved image quality in 1 study with low-dose CTPA. Conclusion: This review shows that double low-dose CTPA is feasible in the diagnosis of pulmonary embolism with significant reductions in both radiation and contrast medium doses, without compromising diagnostic image quality.


2019 ◽  
Vol 187 (1) ◽  
pp. 8-16 ◽  
Author(s):  
Helle Precht ◽  
Svea Deppe Mørup ◽  
Anders Tingberg ◽  
Claus Bjørn Outzen ◽  
Kirsten Weber Kusk ◽  
...  

Abstract The purpose was to examine if scatter correction software could replace a grid while maintaining image quality and reducing radiation dose for pelvic DR examinations. Grid images was produced with 70 kV and 16mAs. Anthropomorphic- and Contrast Detail RADiography (CDRAD) non-grid images were produced with 60 kV, 80 kV and 90 kV combined with five different mAs and scatter correction software. The anthropomorphic images were analyzed by absolute Visual Grading Analysis (VGA). The CDRAD images were analyzed using the CDRAD analysis software. The results showed a total of 54.6% non-grid images were evaluated as unsuitable for diagnostic use by the VGA. The CDRAD grid images showed that the IQF_inv values were significantly different (p = 0.0001) when compared to every group of non-grid images. Hereby, the conclusion stated that the scatter correction software did not compensate for the loss in image quality due to scattered radiation at the exposure levels included in a pelvic examination.


2016 ◽  
Vol 78 (6-7) ◽  
Author(s):  
Varin Chouvatut ◽  
Ekkarat Boonchieng

Radiographic image quality is important in the medical field since it can increase the visibility of anatomical structures and even improve the medical diagnosis. Because the image quality depends on contrast, noise, and spatial resolution, images with low contrast, a lot of noises, or low resolution will decrease image quality, leading to an incorrect diagnosis. Therefore, radiographic images should be enhanced to facilitate medical expertise in making correct diagnosis. In this paper, radiographic images are enhanced by hybrid algorithms based on the idea of combining three image processing techniques: Contrast Limited Adaptive Histogram Equalization for enhancing image contrast, Median Filter for removing noises, and Unsharp Masking for increasing spatial resolution. Two series of medical images consisting of 20 x-ray images and 20 computed radiography images are enhanced with this method. Peak Signal to Noise Ratio (PSNR) and image contrast are computed in order to measure image quality. The results indicate that the enhanced images have better PSNR.


2006 ◽  
Vol 33 (6Part4) ◽  
pp. 2016-2016
Author(s):  
X Kong ◽  
H Liu ◽  
X Rong ◽  
C Sweet ◽  
Z Yang ◽  
...  

BJR|Open ◽  
2020 ◽  
Vol 2 (1) ◽  
pp. 20190044
Author(s):  
Hywel Mortimer-Roberts ◽  
Michael R Rees

Objective: To determine whether the use of display matrix magnification on larger operator screens without the use of conventional magnification can reduce radiation dose to the patient, and what effect it would have on image quality. Methods: The kerma-area product (KAP) resulting from standard projections in cardiac angiography were measured when an anthropomorphic phantom was imaged using conventional magnification method and display matrix magnification. The image quality was also evaluated by three observers using a TOR 18FG test tool for both magnification method. Results: The mean radiation KAP for the seven views with conventional magnification was 36.65 µGy m−2 whilst a reduction in KAP of 20.4% is possible using display matrix magnification (p < 0.05). The image resolution during acquisition was identical between both methods and only slightly reduced for the display matrix (1.6 LP mm−1) compared to conventional magnification (1.8 LP mm−1) when images were stored and retrieved on a Picture Archiving and Communication Systems (PACS) system. Both methods retained the same low-contrast detectability to PACS, with only a slight increase in detectability of 18 for display matrix magnification compared to 17 for conventional. Conclusion: Using display matrix magnification instead of conventional equipment magnification significantly reduces radiation does in all standard cardiac views without reducing image quality for the operator. This reduction in radiation dose is significant (p < 0.05) for the patients. The resolution did not change during acquisition, but contrast improved slightly (0.9% threshold contrast), but lost resolution of 0.2 LP mm−1 when archived to PACS. Advances in knowledge: This is a new method of reducing significant dose to the patient during cardiology examinations and may encourage further studies in other fluoroscopy lead examination to see if it could work for them.


Sign in / Sign up

Export Citation Format

Share Document