scholarly journals Synergistic Effect of Zinc Oxide Nanoparticles and Erythromycin on Methicillin Resistant Staphylococcus aureus Isolated from Different Infections

2021 ◽  
Vol 30 (1) ◽  
pp. 54-67
Author(s):  
Reyam Ghazi ◽  
Essra Alsammak
2021 ◽  
Vol 25 (1) ◽  
Author(s):  
Muhammad Irfan ◽  
Hira Munir ◽  
Hammad Ismail

Abstract Background Herein, we first time used the gum Moringa oleifera as reducing and capping agent for successful synthesis of silver nitrate and zinc oxide nanoparticles(NPs) through green synthesis approach. This study was aimed to check antibacterial activities of synthesized NPs against multidrug resistant bacteria methicillin-resistant Staphylococcus aureus (MRSA). Methods Aqueous solutions of AgNO3 and purified gum powder were mixed with 1:1 ratio, autoclaved at 120oC for 2 min. NPs pellet collected after centrifugation at 10,000 g for 20 min. ZnO NPs were prepared by mixing purified gum powder and metal salt with1:1 ratio, heated (70oC) and stirred at 100 rpm for 4 h followed by centrifugation at 10,000 g for 20 min. Pellet was washed and calcinated at 400oC for 4 h. Antibacterial potential against E. coli, S. aureus and methicillin-resistant Staphylococcus aureus (MRSA) was assessed by widely used Kirby-Bauer antibiotic susceptibility test. Results Optical observation of colour change from transparent to dark and UV-Visible analysis confirmed the synthesis of NPs. Fourier transform infrared spectroscopy (FTIR) of prepared nonmaterial revealed the characteristic AgNPs and ZnO stretch vibrations at wave number of 523 cm− 1 and 471 cm− 1resectively. Crystalline nature of AgNPs and ZnO NPs was confirmed by x-ray diffraction pattern with clear sharp Peaks. Scanning electron microscopy (SEM) revealed good surface morphology of AgNPs and ZnO NPs with 50nm and 60nm size respectively. AgNPs and ZnO NPs exhibited excellent antibacterial activity against E. coli (with zone of inhibition of 21 ± 02mm and 22 ± 03mm) and S.aureus ( with zone of inhibition of 20 ± 03mm and 21 ± 02mm) while good activity was observed against “super bug” methicillin-resistant Staphylococcus aureus (MRSA) with 16 ± 03mm ad 17 ± 02mm zone if inhibitions respectively. Conclusions This novel addition of Moringa Gum based nanoparticles will open new dimensions in the field of nanomedicine and pharmaceutics especially against MDR bacterial strains.


2020 ◽  
Vol 26 (6) ◽  
pp. 200454-0
Author(s):  
Sabaoon Shamshad ◽  
Jamshaid Rashid ◽  
Ihsan-ul-haq ◽  
Naseem Iqbal ◽  
Saif Ullah Awan

Multidrug resistance of bacteria is an emerging human health hazard and warrants development of novel antibacterial agents with more effective mode of action. Here, zinc oxide and silver nanomaterials were prepared using Ficus palmata Forssk leaf extract with efficient antibacterial activity. SEM coupled with EDS confirmed the spherical symmetry with average particle diameter 50 to 65 nm while the XRD confirmed crystalline face centered cubic structure of silver and hexagonal crystallize phase of zinc oxide nanoparticles. Antibacterial activity was evaluated for 8 pathogenic bacterial strains including 3 drug resistant pathogenic strains. The nanoparticles showed enhanced growth inhibition for resistant strains in comparison with the broad-spectrum antibiotics i.e. roxithromycin and cefixime. Minimum inhibitory concentration in μg.mL<sup>-1</sup> of silver nanoparticles was found to be as low as 33.3 for resistant Streptococcus haemolyticus; 11.1 for Staphylococcus aureus and E Coli; and 3.7 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa. Similarly, the minimum inhibitory concentration of zinc oxide nanoparticles was found to be 100 μg.mL<sup>-1</sup> against resistant Streptococcus haemolyticus and Staphylococcus aureus; 11.1 μg.mL<sup>-1</sup> for resistant Pseudomonas aeruginosa; and 3.7 μg.mL<sup>-1</sup> against resistant E coli. Ficus palmata Forssk leaf extracts can be explored effectively for synthesizing active antibacterial nanomaterials as a non-toxic and environmentally benign synthesis route.


Author(s):  
Pari Tamri ◽  
Shabnam Pourmoslemi ◽  
Shirin Moradkhani ◽  
Sahar Foroughinia

Scrophularia. striata from Scrophulariacea family has been used in Iranian folk medicine for the treatment of infectious diseases. In this study we evaluated the synergistic effect of S. striata   hydroalcoholic extract (SSE) and commercially available antibiotics against P. aeroginosa and Methicillin- resistant Staphylococcus aureus (MRSA). The resazurin-based microdilution method was used to determine the minimum inhibitory concentration (MIC) values of plan extract and standard antibiotics. The interaction between standard antibiotics and SSE was evaluated by using checkerboard method. The results of this study revealed that SSE enhance the antibacterial activity of antibiotics. The combination of SSE and Vancomycin had synergistic to additive effects against MRSA.  SSE in combination with Gentamicin had synergistic to additive effects against P. aeruginosa. The interaction between Ceftazidime and SSE was additive against P. aeruginosa.  The best result was the synergistic effect between SSE and Piperacillin-Tazobactam against P. aeruginosa. In conclusion the results of this research indicated that S. striata has the potential to enhance the antibacterial activity of antibiotics and could be a source to the designing new compounds with synergistic effect in combination with standard antibiotics.


2016 ◽  
Vol 61 (1) ◽  
Author(s):  
Karl Evans R. Henson ◽  
Juwon Yim ◽  
Jordan R. Smith ◽  
George Sakoulas ◽  
Michael J. Rybak

ABSTRACT The evidence for using combination therapy for the treatment of serious methicillin-resistant Staphylococcus aureus (MRSA) infections is growing. In this study, we investigated the synergistic effect of daptomycin (DAP) combined with piperacillin-tazobactam and ampicillin-sulbactam against MRSA in time-kill experiments. Six of eight strains demonstrated synergy between DAP and the β-lactam–β-lactamase inhibitor (BLI) combination. In 5/8 strains, the synergy occurred only in the presence of the BLI, highlighting a role for BLIs in peptide–β-lactam synergy.


Sign in / Sign up

Export Citation Format

Share Document