scholarly journals Pulmonary Fissure Detection in 3D CT Images Using a Multiple Section Model

Algorithms ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 75
Author(s):  
Runing Xiao ◽  
Jinzhi Zhou

As a typical landmark in human lungs, the detection of pulmonary fissures is of significance to computer aided diagnosis and surgery. However, the automatic detection of pulmonary fissures in CT images is a difficult task due to complex factors like their 3D membrane shape, intensity variation and adjacent interferences. Based on the observation that the fissure object often appears as thin curvilinear structures across 2D section images, we present an efficient scheme to solve this problem by merging the fissure line detection from multiple cross-sections in different directions. First, an existing oriented derivative of stick (ODoS) filter was modified for pulmonary fissure line enhancement. Then, an orientation partition scheme was applied to suppress the adhering clutters. Finally, a multiple section model was proposed for pulmonary fissure integration and segmentation. The proposed method is expected to improve fissure detection by extracting more weak objects while suppressing unrelated interferences. The performance of our scheme was validated in experiments using the publicly available open Lobe and Lung Analysis 2011 (LOLA11) dataset. Compared with manual references, the proposed scheme achieved a high segmentation accuracy, with a median F1-score of 0.8916, which was much better than conventional methods.

Author(s):  
Hayder Ayad ◽  
Ikhlas Watan Ghindawi ◽  
Mustafa Salam Kadhm

<div id="titleAndAbstract"><table class="data" width="100%"><tbody><tr valign="top"><td class="value">The Prediction and detection disease in human lungs are a very critical operation. It depends on an efficient view of the CT images to the doctors. It depends on an efficient view of the CT images to the doctors. The clear view of the images to clearly identify the disease depends on the segmentation that may save people lives. Therefore, an accurate lung segmentation system from CT image based on proposed CNN architecture is proposed. The system used weighted softmax function the improved the segmentation accuracy. By experiments, the system achieved a high segmentation accuracy 98.9% using LIDC-IDRI CT lung images database.</td></tr></tbody></table></div><div id="indexing"> </div>


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fahime Khozeimeh ◽  
Danial Sharifrazi ◽  
Navid Hoseini Izadi ◽  
Javad Hassannataj Joloudari ◽  
Afshin Shoeibi ◽  
...  

AbstractCOVID-19 has caused many deaths worldwide. The automation of the diagnosis of this virus is highly desired. Convolutional neural networks (CNNs) have shown outstanding classification performance on image datasets. To date, it appears that COVID computer-aided diagnosis systems based on CNNs and clinical information have not yet been analysed or explored. We propose a novel method, named the CNN-AE, to predict the survival chance of COVID-19 patients using a CNN trained with clinical information. Notably, the required resources to prepare CT images are expensive and limited compared to those required to collect clinical data, such as blood pressure, liver disease, etc. We evaluated our method using a publicly available clinical dataset that we collected. The dataset properties were carefully analysed to extract important features and compute the correlations of features. A data augmentation procedure based on autoencoders (AEs) was proposed to balance the dataset. The experimental results revealed that the average accuracy of the CNN-AE (96.05%) was higher than that of the CNN (92.49%). To demonstrate the generality of our augmentation method, we trained some existing mortality risk prediction methods on our dataset (with and without data augmentation) and compared their performances. We also evaluated our method using another dataset for further generality verification. To show that clinical data can be used for COVID-19 survival chance prediction, the CNN-AE was compared with multiple pre-trained deep models that were tuned based on CT images.


2018 ◽  
Vol 165 ◽  
pp. 205-214 ◽  
Author(s):  
Siqi Li ◽  
Huiyan Jiang ◽  
Zhiguo Wang ◽  
Guoxu Zhang ◽  
Yu-dong Yao

2020 ◽  
Author(s):  
Yang Liu ◽  
Lu Meng ◽  
Jianping Zhong

Abstract Background: For deep learning, the size of the dataset greatly affects the final training effect. However, in the field of computer-aided diagnosis, medical image datasets are often limited and even scarce.Methods: We aim to synthesize medical images and enlarge the size of the medical image dataset. In the present study, we synthesized the liver CT images with a tumor based on the mask attention generative adversarial network (MAGAN). We masked the pixels of the liver tumor in the image as the attention map. And both the original image and attention map were loaded into the generator network to obtain the synthesized images. Then the original images, the attention map, and the synthesized images were all loaded into the discriminator network to determine if the synthesized images were real or fake. Finally, we can use the generator network to synthesize liver CT images with a tumor.Results: The experiments showed that our method outperformed the other state-of-the-art methods, and can achieve a mean peak signal-to-noise ratio (PSNR) as 64.72dB.Conclusions: All these results indicated that our method can synthesize liver CT images with tumor, and build large medical image dataset, which may facilitate the progress of medical image analysis and computer-aided diagnosis.


2021 ◽  
Author(s):  
Hoon Ko ◽  
Jimi Huh ◽  
Kyung Won Kim ◽  
Heewon Chung ◽  
Yousun Ko ◽  
...  

BACKGROUND Detection and quantification of intraabdominal free fluid (i.e., ascites) on computed tomography (CT) are essential processes to find emergent or urgent conditions in patients. In an emergent department, automatic detection and quantification of ascites will be beneficial. OBJECTIVE We aimed to develop an artificial intelligence (AI) algorithm for the automatic detection and quantification of ascites simultaneously using a single deep learning model (DLM). METHODS 2D deep learning models (DLMs) based on a deep residual U-Net, U-Net, bi-directional U-Net, and recurrent residual U-net were developed to segment areas of ascites on an abdominopelvic CT. Based on segmentation results, the DLMs detected ascites by classifying CT images into ascites images and non-ascites images. The AI algorithms were trained using 6,337 CT images from 160 subjects (80 with ascites and 80 without ascites) and tested using 1,635 CT images from 40 subjects (20 with ascites and 20 without ascites). The performance of AI algorithms was evaluated for diagnostic accuracy of ascites detection and for segmentation accuracy of ascites areas. Of these DLMs, we proposed an AI algorithm with the best performance. RESULTS The segmentation accuracy was the highest in the deep residual U-Net with a mean intersection over union (mIoU) value of 0.87, followed by U-Net, bi-directional U-Net, and recurrent residual U-net (mIoU values 0.80, 0.77, and 0.67, respectively). The detection accuracy was the highest in the deep residual U-net (0.96), followed by U-Net, bi-directional U-net, and recurrent residual U-net (0.90, 0.88, and 0.82, respectively). The deep residual U-net also achieved high sensitivity (0.96) and high specificity (0.96). CONCLUSIONS We propose the deep residual U-net-based AI algorithm for automatic detection and quantification of ascites on abdominopelvic CT scans, which provides excellent performance.


Author(s):  
Yanan Wu ◽  
Shouliang Qi ◽  
Yu Sun ◽  
Shuyue Xia ◽  
Yudong Yao ◽  
...  

Abstract Objective: Emphysema is characterized by the destruction and permanent enlargement of the alveoli in the lung. According to visual CT appearance, emphysema can be divided into three subtypes: centrilobular emphysema (CLE), panlobular emphysema (PLE), and paraseptal emphysema (PSE). Automating emphysema classification can help precisely determine the patterns of lung destruction and provide a quantitative evaluation. Approach: We propose a vision transformer (ViT) model to classify the emphysema subtypes via CT images. First, large patches (61×61) are cropped from CT images which contain the area of normal lung parenchyma (NLP), CLE, PLE, and PSE. After resizing, the large patch is divided into small patches and these small patches are converted to a sequence of patch embeddings by flattening and linear embedding. A class embedding is concatenated to the patch embedding, and the positional embedding is added to the resulting embeddings described above. Then, the obtained embedding is fed into the transformer encoder blocks to generate the final representation. Finally, the learnable class embedding is fed to a softmax layer to classify the emphysema. Main results: To overcome the lack of massive data, the transformer encoder blocks (pre-trained on ImageNet) are transferred and fine-tuned in our ViT model. The average accuracy of the pre-trained ViT model achieves 95.95% in our lab’s own dataset which is higher than that of AlexNet, Inception-V3, MobileNet-V2, ResNet34, and ResNet50. Meanwhile, the pre-trained ViT model outperforms the ViT model without the pre-training. The accuracy of our pre-trained ViT model is higher than or comparable to that by available methods for the public dataset. Significance: The results demonstrated that the proposed ViT model can accurately classify the subtypes of emphysema using CT images. The ViT model can help make an effective computer-aided diagnosis of emphysema, and the ViT method can be extended to other medical applications.


2006 ◽  
Author(s):  
Hitoshi Satoh ◽  
Noboru Niki ◽  
Kiyoshi Mori ◽  
Kenji Eguchi ◽  
Masahiro Kaneko ◽  
...  

2020 ◽  
Vol 10 (13) ◽  
pp. 4477
Author(s):  
Naoki Kamiya ◽  
Ami Oshima ◽  
Xiangrong Zhou ◽  
Hiroki Kato ◽  
Takeshi Hara ◽  
...  

This study aimed to develop and validate an automated segmentation method for surface muscles using a three-dimensional (3D) U-Net based on selective voxel patches from whole-body computed tomography (CT) images. Our method defined a voxel patch (VP) as the input images, which consisted of 56 slices selected at equal intervals from the whole slices. In training, one VP was used for each case. In the test, multiple VPs were created according to the number of slices in the test case. Segmentation was then performed for each VP and the results of each VP merged. The proposed method achieved a segmentation accuracy mean dice coefficient of 0.900 for 8 cases. Although challenges remain in muscles adjacent to visceral organs and in small muscle areas, VP is useful for surface muscle segmentation using whole-body CT images with limited annotation data. The limitation of our study is that it is limited to cases of muscular disease with atrophy. Future studies should address whether the proposed method is effective for other modalities or using data with different imaging ranges.


Sign in / Sign up

Export Citation Format

Share Document