scholarly journals On a Hybridization of Deep Learning and Rough Set Based Granular Computing

Algorithms ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 63 ◽  
Author(s):  
Krzysztof Ropiak ◽  
Piotr Artiemjew

The set of heuristics constituting the methods of deep learning has proved very efficient in complex problems of artificial intelligence such as pattern recognition, speech recognition, etc., solving them with better accuracy than previously applied methods. Our aim in this work has been to integrate the concept of the rough set to the repository of tools applied in deep learning in the form of rough mereological granular computing. In our previous research we have presented the high efficiency of our decision system approximation techniques (creating granular reflections of systems), which, with a large reduction in the size of the training systems, maintained the internal knowledge of the original data. The current research has led us to the question whether granular reflections of decision systems can be effectively learned by neural networks and whether the deep learning will be able to extract the knowledge from the approximated decision systems. Our results show that granulated datasets perform well when mined by deep learning tools. We have performed exemplary experiments using data from the UCI repository—Pytorch and Tensorflow libraries were used for building neural network and classification process. It turns out that deep learning method works effectively based on reduced training sets. Approximation of decision systems before neural networks learning can be important step to give the opportunity to learn in reasonable time.

Author(s):  
Ruofan Liao ◽  
Paravee Maneejuk ◽  
Songsak Sriboonchitta

In the past, in many areas, the best prediction models were linear and nonlinear parametric models. In the last decade, in many application areas, deep learning has shown to lead to more accurate predictions than the parametric models. Deep learning-based predictions are reasonably accurate, but not perfect. How can we achieve better accuracy? To achieve this objective, we propose to combine neural networks with parametric model: namely, to train neural networks not on the original data, but on the differences between the actual data and the predictions of the parametric model. On the example of predicting currency exchange rate, we show that this idea indeed leads to more accurate predictions.


Geophysics ◽  
2021 ◽  
pp. 1-45
Author(s):  
Runhai Feng ◽  
Dario Grana ◽  
Niels Balling

Segmentation of faults based on seismic images is an important step in reservoir characterization. With the recent developments of deep-learning methods and the availability of massive computing power, automatic interpretation of seismic faults has become possible. The likelihood of occurrence for a fault can be quantified using a sigmoid function. Our goal is to quantify the fault model uncertainty that is generally not captured by deep-learning tools. We propose to use the dropout approach, a regularization technique to prevent overfitting and co-adaptation in hidden units, to approximate the Bayesian inference and estimate the principled uncertainty over functions. Particularly, the variance of the learned model has been decomposed into aleatoric and epistemic parts. The proposed method is applied to a real dataset from the Netherlands F3 block with two different dropout ratios in convolutional neural networks. The aleatoric uncertainty is irreducible since it relates to the stochastic dependency within the input observations. As the number of Monte-Carlo realizations increases, the epistemic uncertainty asymptotically converges and the model standard deviation decreases, because the variability of model parameters is better simulated or explained with a larger sample size. This analysis can quantify the confidence to use fault predictions with less uncertainty. Additionally, the analysis suggests where more training data are needed to reduce the uncertainty in low confidence regions.


2021 ◽  
Author(s):  
Ping-Huan Kuo ◽  
Po-Chien Luan ◽  
Yung-Ruen Tseng ◽  
Her-Terng Yau

Abstract Chatter has a direct effect on the precision and life of machine tools and its detection is a crucial issue in all metal machining processes. Traditional methods focus on how to extract discriminative features to help identify chatter. Nowadays, deep learning models have shown an extraordinary ability to extract data features which are their necessary fuel. In this study deep learning models have been substituted for more traditional methods. Chatter data are rare and valuable because the collecting process is extremely difficult. To solve this practical problem an innovative training strategy has been proposed that is combined with a modified convolutional neural network and deep convolutional generative adversarial nets. This improves chatter detection and classification. Convolutional neural networks can be effective chatter classifiers, and adversarial networks can act as generators that produce more data. The convolutional neural networks were trained using original data as well as by forged data produced by the generator. Original training data were collected and preprocessed by the Chen-Lee chaotic system. The adversarial training process used these data to create the generator and the generator could produce enough data to compensate for the lack of training data. The experimental results were compared with without a data generator and data augmentation. The proposed method had an accuracy of 95.3% on leave-one-out cross-validation over ten runs and surpassed other methods and models. The forged data were also compared with original training data as well as data produced by augmentation. The distribution shows that forged data had similar quality and characteristics to the original data. The proposed training strategy provides a high-quality deep learning chatter detection model.


Algorithms ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 79
Author(s):  
Piotr Artiemjew

Granular computing techniques are a huge discipline in which the basic component is to operate on groups of similar objects according to a fixed similarity measure. The first references to the granular computing can be seen in the works of Zadeh in fuzzy set theory. Granular computing allows for a very natural modelling of the world. It is very likely that the human brain, while solving problems, performs granular calculations on data collected from the senses. The researchers of this paradigm have proven the unlimited possibilities of granular computing. Among other things, they are used in the processes of classification, regression, missing values handling, for feature selection, and as mechanisms of data approximation. It is impossible to quote all methods based on granular computing—we can only discuss a selected group of techniques. In the article, we have presented a review of recently developed granulation techniques belonging to the family of approximation algorithms founded by Polkowski—in the framework of rough set theory. Starting from the basic Polkowski’s standard granulation, we have described further developed by us concept dependent, layered, and epsilon variants, and our recent homogeneous granulation. We are presenting simple numerical examples and samples of research results. The effectiveness of these methods in terms of decision system size reduction and maintenance of the internal knowledge from the original data are presented. The reduction in the number of objects in our techniques while maintaining classification efficiency reaches 90 percent—for standard granulation with usage of a kNN classifier (we achieve similar efficiency for the concept-dependent technique for the Naive Bayes classifier). The largest reduction achieved in the number of exhaustive set of rules at the efficiency level to the original data are 99 percent—it is for concept-dependent granulation. In homogeneous variants, the reduction is less than 60 percent, but the advantage of these techniques is that it is not necessary to look for optimal granulation parameters, which are selected dynamically. We also describe potential directions of development of granular computing techniques by prism of described methods.


2014 ◽  
Vol 543-547 ◽  
pp. 2017-2023
Author(s):  
Qing Guan ◽  
Jian He Guan

The technique of a new extension of fuzzy rough theory using partition of interval set-valued is proposed for granular computing during knowledge discovery in this paper. The natural intervals of attribute values in decision system to be transformed into multiple sub-interval of [0,1]are given by normalization. And some characteristics of interval set-valued of decision systems in fuzzy rough set theory are discussed. The correctness and effectiveness of the approach are shown in experiments. The approach presented in this paper can also be used as a data preprocessing step for other symbolic knowledge discovery or machine learning methods other than rough set theory.


Author(s):  
Ahmed R. Luaibi ◽  
Tariq M. Salman ◽  
Abbas Hussein Miry

The food security major threats are the diseases affected in plants such as citrus so that the identification in an earlier time is very important. Convenient malady recognition can assist the client with responding immediately and sketch for some guarded activities. This recognition can be completed without a human by utilizing plant leaf pictures. There are many methods employed for the classification and detection in machine learning (ML) models, but the combination of increasing advances in computer vision appears the deep learning (DL) area research to achieve a great potential in terms of increasing accuracy. In this paper, two ways of conventional neural networks are used named Alex Net and Res Net models with and without data augmentation involves the process of creating new data points by manipulating the original data. This process increases the number of training images in DL without the need to add new photos, it will appropriate in the case of small datasets. A self-dataset of 200 images of diseases and healthy citrus leaves are collected. The trained models with data augmentation give the best results with 95.83% and 97.92% for Res Net and Alex Net respectively.


Automatic Face expression is the significant device in computer apparition and a predictable knowledge discovery application in automation, personal security and moveable devices. However, the state-of-the-art machine and deep learning (DL) methods has complete this technology game altering and even better human matching part in terms of accurateness. This paper focuses on put on one of the progressive deep learning tools in face expression to achieve higher accuracy. In this paper, we focusses on Automatic Facial Expressions and Identification of different face reactions using Convolution Neural Network. Here, we framed our own data and trained by convolution neural networks. Human behavior can be easily predicted using their facial expression, which helps marketing team, psychological team and other required team to understand the human facial expression more clearly.


2020 ◽  
Author(s):  
Dean Sumner ◽  
Jiazhen He ◽  
Amol Thakkar ◽  
Ola Engkvist ◽  
Esben Jannik Bjerrum

<p>SMILES randomization, a form of data augmentation, has previously been shown to increase the performance of deep learning models compared to non-augmented baselines. Here, we propose a novel data augmentation method we call “Levenshtein augmentation” which considers local SMILES sub-sequence similarity between reactants and their respective products when creating training pairs. The performance of Levenshtein augmentation was tested using two state of the art models - transformer and sequence-to-sequence based recurrent neural networks with attention. Levenshtein augmentation demonstrated an increase performance over non-augmented, and conventionally SMILES randomization augmented data when used for training of baseline models. Furthermore, Levenshtein augmentation seemingly results in what we define as <i>attentional gain </i>– an enhancement in the pattern recognition capabilities of the underlying network to molecular motifs.</p>


Sign in / Sign up

Export Citation Format

Share Document