scholarly journals An Active Vehicle Suspension Control Approach with Electromagnetic and Hydraulic Actuators

Actuators ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 35 ◽  
Author(s):  
Francisco Beltran-Carbajal ◽  
Antonio Valderrabano-Gonzalez ◽  
Antonio Favela-Contreras ◽  
Jose Luis Hernandez-Avila ◽  
Irvin Lopez-Garcia ◽  
...  

An active vibration control approach from an online estimation perspective of unavailable feedback signals for a quarter-vehicle suspension system is introduced. The application of a new signal differentiation technique for the online estimation of disturbance trajectories due to irregular road surfaces and velocity state variables is described. It is assumed that position measurements are only available for active disturbance suppression control implementation. Real-time signal differentiation is independent of detailed mathematical models of specific dynamic systems and control force generation mechanisms. Active control forces can be supplied by electromagnetic or hydraulic actuators. Analytical and simulation results prove the effective and fast dynamic performance of the online signal estimation as well as a satisfactory active disturbance attenuation on a quarter-vehicle active suspension system.


2002 ◽  
Vol 8 (7) ◽  
pp. 967-991 ◽  
Author(s):  
Javad Marzbanrad ◽  
Goodarz Ahmadi ◽  
Yousef Hojjat ◽  
Hassan Zohoor

An optimal preview control of a vehicle suspension system traveling on a rough road is studied. A three-dimensional seven degree-of-freedom car-riding model and several descriptions of the road surface roughness heights, including haversine (hole/bump) and stochastic filtered white noise models, are used in the analysis. It is assumed that contact-less sensors affixed to the vehicle front bumper measure the road surface height at some distances in the front of the car. The suspension systems are optimized with respect to ride comfort and road holding preferences including accelerations of the sprung mass, tire deflection, suspension rattle space and control force. The performance and power demand of active, active and delay, active and preview systems are evaluated and are compared with those for the passive system. The results show that the optimal preview control improves all aspects of the vehicle suspension performance while requiring less power. Effects of variation of preview time and variations in the road condition are also examined.



Author(s):  
F Yu ◽  
J-W Zhang ◽  
D. A. Crolla

Based on a half-vehicle model, an algorithm is proposed for a Kalman filter optimal active vehicle suspension system using the correlation between front and rear wheel road inputs. In this paper, two main issues were investigated, i.e. the estimation accuracy of the Kalman filter for state variables, and the potential improvements from wheelbase preview. Simulations showed good estimations from the state observer. However, if the wheelbase preview algorithm is incorporated, the estimation accuracy for the additional states significantly decreases as vehicle speed and the corresponding measurement noises increase. Significant benefits from wheelbase preview were further proved, and the available performance improvements of the rear wheel station could be up to 35 per cent. Because of the feasibility and effectiveness of the proposed algorithm, and no additional cost for measurements and sensing needs, wheelbase preview can be a promising algorithm for Kalman filter active suspension system designs.



2018 ◽  
Vol 37 (3) ◽  
pp. 456-467 ◽  
Author(s):  
Hao You ◽  
Yongjun Shen ◽  
Haijun Xing ◽  
Shaopu Yang

In this paper the optimal control and parameters design of fractional-order vehicle suspension system are researched, where the system is described by fractional-order differential equation. The linear quadratic optimal state regulator is designed based on optimal control theory, which is applied to get the optimal control force of the active fractional-order suspension system. A stiffness-damping system is added to the passive fractional-order suspension system. Based on the criteria, i.e. the force arising from the accessional stiffness-damping system should be as close as possible to the optimal control force of the active fractional-order suspension system, the parameters of the optimized passive fractional-order suspension system are obtained by least square algorithm. An Oustaloup filter algorithm is adopted to simulate the fractional-order derivatives. Then, the simulation models of the three kinds of fractional-order suspension systems are developed respectively. The simulation results indicate that the active and optimized passive fractional-order suspension systems both reduce the value of vehicle body vertical acceleration and improve the ride comfort compared with the passive fractional-order suspension system, whenever the vehicle is running on a sinusoidal surface or random surface.



2017 ◽  
Vol 24 (15) ◽  
pp. 3307-3320 ◽  
Author(s):  
Bahman Abdi ◽  
Mehdi Mirzaei ◽  
Reza Mojed Gharamaleki

The vehicle active suspension system is a multi-objective control system with the input constraint. In this paper, a new effective method is proposed for constrained optimal control of a vehicle suspension system including nonlinear characteristics for elasto-damping elements. In the proposed method, an equivalent constrained optimization problem is firstly formulated by performing a performance index which is defined as a weighted combination of predicted responses of nonlinear suspension system and control signal. Then, the constrained optimization problem is analytically solved by the Kerush–Kuhn–Tucker (KKT) theorem to find the control law. The proposed constrained controller is compared with the unconstrained optimal controller for which the limitation of control force is satisfied by regulation of its weighting factor in the performance index. Simulation studies are conducted to show the effectiveness of two controllers. The results indicate that the constrained controller utilizes the maximum capacity of external forces and consequently attains a better performance in the presence of force limitations.



Author(s):  
R. Sakthivel ◽  
A. Arunkumar ◽  
K. Mathiyalagan ◽  
S. Selvi

Synthesis of control design is an essential part for vehicle suspension systems. This paper addresses the issue of robust reliable H∞ control for active vehicle suspension system with input delays and linear fractional uncertainties. By constructing an appropriate Lyapunov–Krasovskii functional, a set of sufficient conditions in terms of linear matrix inequalities (LMIs) are derived for ensuring the robust asymptotic stability of the active vehicle suspension system with a H∞ disturbance attenuation level γ. In particular, the uncertainty appears in the sprung mass, unsprung mass, damping and stiffness parameters are assumed in linear fractional transformation (LFT) formulations. More precisely, the designed controller is presented in terms of the solution of LMIs which can be easily checked by Matlab-LMI toolbox. Finally, a quarter-car suspension model is considered as an example to illustrate the effectiveness and applicability of the proposed control strategy.



IEEE Access ◽  
2021 ◽  
Vol 9 ◽  
pp. 13878-13890
Author(s):  
Gyuwon Kim ◽  
Soo Young Lee ◽  
Jong-Seok Oh ◽  
Seungchul Lee


Author(s):  
Maria Aline Gonçalves ◽  
Rodrigo Tumolin Rocha ◽  
Frederic Conrad Janzen ◽  
José Manoel Balthazar ◽  
Angelo Marcelo Tusset


Sign in / Sign up

Export Citation Format

Share Document