scholarly journals Crop Sensor Based Non-destructive Estimation of Nitrogen Nutritional Status, Yield, and Grain Protein Content in Wheat

Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 148 ◽  
Author(s):  
Marta Aranguren ◽  
Ander Castellón ◽  
Ana Aizpurua

Minimum NNI (Nitrogen Nutrition Index) values have been developed for each key growing stage of wheat (Triticum aestivum) to achieve high grain yields and grain protein content (GPC). However, the determination of NNI is time-consuming. This study aimed to (i) determine if the NNI can be predicted using the proximal sensing tools RapidScan CS-45 (NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference Red Edge)) and Yara N-TesterTM and if a single model for several growing stages could be used to predict the NNI (or if growing stage-specific models would be necessary); (ii) to determine if yield and GPC can be predicted using both tools; and (iii) to determine if the predictions are improved using normalized values rather than absolute values. Field trials were established for three consecutive growing seasons where different N fertilization doses were applied. The tools were applied during stem elongation, leaf-flag emergence, and mid-flowering. In the same stages, the plant biomass was sampled, N was analyzed, and the NNI was calculated. The NDVI was able to estimate the NNI with a single model for all growing stages (R2 = 0.70). RapidScan indexes were able to predict the yield at leaf-flag emergence with normalized values (R2 = 0.70–0.76). The sensors were not able to predict GPC. Data normalization improved the model for yield but not for NNI prediction.

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 374
Author(s):  
Marta Aranguren ◽  
Ander Castellón ◽  
Ana Aizpurua

Adequate N fertilisation is crucial to increase the grain protein content (GPC) values in wheat. The recommended level of GPC needed to achieve high-quality bread-making flour should be higher than 12.5%. However, it is difficult to ensure the GPC values that the crop will achieve because N in grain is derived from two different sources: N remobilized into the grain from N accumulated in the pre-anthesis period, and N absorbed from the soil in the post-anthesis period. This study aimed to (i) evaluate the effect of the application of N on the rate of stem elongation (GS30) when farmyard manures are applied as initial fertilisers on GPC and on the chlorophyll meter (CM) values at mid-anthesis (GS65), (ii) establish a relationship between the CM values at GS65 and GPC, and (iii) determine a minimum CM value at GS65 to obtain GPC values above 12.5%. Three field trials were performed in three consecutive growing seasons, and different N fertilisation doses were applied. Readings using the CM Yara N-TesterTM were taken at GS65. The type of initial fertiliser did not affect the GPC and CM values. Generally, the greater the N application at GS30 is, the higher the GPC and CM values are. CM values can help to estimate GPC values only when yields are below 8000 kg ha−1. Additionally, CM values at GS65 should be higher than 700 to achieve high-quality bread-making flour (12.5%) at such yield levels. These results will allow farmers and cooperatives to make better decisions regarding late-nitrogen fertilisation and wheat sales.


2013 ◽  
Vol 11 (6) ◽  
pp. 1115-1120 ◽  
Author(s):  
Zhou Wang ◽  
Wenjiang Huang ◽  
Keming Yang ◽  
Long Tian ◽  
Li Cui ◽  
...  

2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Saule Kenzhebayeva ◽  
Alfia Abekova ◽  
Saule Atabayeva ◽  
Gulzira Yernazarova ◽  
Nargul Omirbekova ◽  
...  

Deficiency of metals, primarily Fe and Zn, affects over half of the world’s population. Human diets dominated by cereal products cause micronutrient malnutrition, which is common in many developing countries where populations depend heavily on staple grain crops such as wheat, maize, and rice. Biofortification is one of the most effective approaches to alleviate malnutrition. Genetically stable mutant spring wheat lines (M7 generation) produced via 100 or 200 Gy gamma treatments to broaden genetic variation for grain nutrients were analyzed for nutritionally important minerals (Ca, Fe, and Zn), their bioavailability, and grain protein content (GPC). Variation was 172.3–883.0 mg/kg for Ca, 40.9–89.0 mg/kg for Fe, and 22.2–89.6 mg/kg for Zn. In mutant lines, among the investigated minerals, the highest increases in concentrations were observed in Fe, Zn, and Ca when compared to the parental cultivar Zhenis. Some mutant lines, mostly in the 100 Gy-derived germplasm, had more than two-fold higher Fe, Zn, and Ca concentrations, lower phytic acid concentration (1.4–2.1-fold), and 6.5–7% higher grain protein content compared to the parent. Variation was detected for the molar ratios of Ca:Phy, Phy:Fe, and Phy:Zn (1.27–10.41, 1.40–5.32, and 1.78–11.78, respectively). The results of this study show how genetic variation generated through radiation can be useful to achieve nutrient biofortification of crops to overcome human malnutrition.


Author(s):  
Isaiah O. Ochieng’ ◽  
Harun I. Gitari ◽  
Benson Mochoge ◽  
Esmaeil Rezaei-Chiyaneh ◽  
Joseph P. Gweyi-Onyango

2013 ◽  
Vol 13 (1) ◽  
pp. 35 ◽  
Author(s):  
Shengguan Cai ◽  
Gang Yu ◽  
Xianhong Chen ◽  
Yechang Huang ◽  
Xiaogang Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document