scholarly journals Wheat Grain Protein Content under Mediterranean Conditions Measured with Chlorophyll Meter

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 374
Author(s):  
Marta Aranguren ◽  
Ander Castellón ◽  
Ana Aizpurua

Adequate N fertilisation is crucial to increase the grain protein content (GPC) values in wheat. The recommended level of GPC needed to achieve high-quality bread-making flour should be higher than 12.5%. However, it is difficult to ensure the GPC values that the crop will achieve because N in grain is derived from two different sources: N remobilized into the grain from N accumulated in the pre-anthesis period, and N absorbed from the soil in the post-anthesis period. This study aimed to (i) evaluate the effect of the application of N on the rate of stem elongation (GS30) when farmyard manures are applied as initial fertilisers on GPC and on the chlorophyll meter (CM) values at mid-anthesis (GS65), (ii) establish a relationship between the CM values at GS65 and GPC, and (iii) determine a minimum CM value at GS65 to obtain GPC values above 12.5%. Three field trials were performed in three consecutive growing seasons, and different N fertilisation doses were applied. Readings using the CM Yara N-TesterTM were taken at GS65. The type of initial fertiliser did not affect the GPC and CM values. Generally, the greater the N application at GS30 is, the higher the GPC and CM values are. CM values can help to estimate GPC values only when yields are below 8000 kg ha−1. Additionally, CM values at GS65 should be higher than 700 to achieve high-quality bread-making flour (12.5%) at such yield levels. These results will allow farmers and cooperatives to make better decisions regarding late-nitrogen fertilisation and wheat sales.

Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 148 ◽  
Author(s):  
Marta Aranguren ◽  
Ander Castellón ◽  
Ana Aizpurua

Minimum NNI (Nitrogen Nutrition Index) values have been developed for each key growing stage of wheat (Triticum aestivum) to achieve high grain yields and grain protein content (GPC). However, the determination of NNI is time-consuming. This study aimed to (i) determine if the NNI can be predicted using the proximal sensing tools RapidScan CS-45 (NDVI (Normalized Difference Vegetation Index) and NDRE (Normalized Difference Red Edge)) and Yara N-TesterTM and if a single model for several growing stages could be used to predict the NNI (or if growing stage-specific models would be necessary); (ii) to determine if yield and GPC can be predicted using both tools; and (iii) to determine if the predictions are improved using normalized values rather than absolute values. Field trials were established for three consecutive growing seasons where different N fertilization doses were applied. The tools were applied during stem elongation, leaf-flag emergence, and mid-flowering. In the same stages, the plant biomass was sampled, N was analyzed, and the NNI was calculated. The NDVI was able to estimate the NNI with a single model for all growing stages (R2 = 0.70). RapidScan indexes were able to predict the yield at leaf-flag emergence with normalized values (R2 = 0.70–0.76). The sensors were not able to predict GPC. Data normalization improved the model for yield but not for NNI prediction.


1992 ◽  
Vol 118 (3) ◽  
pp. 265-269 ◽  
Author(s):  
A. A. Sajo ◽  
D. H. Scarisbrick ◽  
A. G. Clewer

SUMMARYA field experiment was carried out at the Wye College Farm during 1988 and 1989. The aim was to study the effects of three rates and timings of nitrogen fertilizer application on the grain protein content of spring wheat cv. Axona. Results demonstrated that timing of fertilizer application was more important than the rate of nitrogen used. Grain protein development and final grain protein contents are discussed in relation to the seasonal variations experienced during the 1988 and 1989 growing seasons in South East England. Due to the early February sowing in 1989, grain protein content was not affected by the summer drought. Thus, the advantage of early sowing of spring wheat to reduce the detrimental effect of early summer drought on the grain protein content is emphasised.


2016 ◽  
Vol 85 (1) ◽  
pp. 41-50
Author(s):  
Tamayo Abe ◽  
Tetsuji Yanagihara ◽  
Yoichi Sugikawa ◽  
Akito Sugawara ◽  
Tatsuya Suda ◽  
...  

2020 ◽  
Author(s):  
Hui Cao ◽  
Owen Duncan ◽  
Shahidul Islam ◽  
Jingjuan Zhang ◽  
Wujun Ma ◽  
...  

ABSTRACTIntrogression of a high molecular weight glutenin subunit (HMW-GS) gene, 1Ay21*, into commercial wheat cultivars increased overall grain protein content and bread-making quality by unknown mechanisms. As well as increased abundance of 1Ay HMW-GS, 115 differentially expressed proteins (DEPs) were discovered between three cultivars and corresponding introgressed near-isogenic lines (NILs). Functional category analysis showed that the DEPs were predominantly other storage proteins, and proteins involved in protein synthesis, protein folding, protein degradation, stress response and grain development. Nearly half the genes encoding the DEPs showed strong co-expression patterns during grain development. Promoters of these genes are enriched in elements associated with transcription initiation and light response, indicating a potential connection between these cis-elements and grain protein accumulation. A model of how this HMW-GS enhances the abundance of machinery for protein synthesis and maturation during grain filling is proposed. This analysis not only provides insights into how introgression of the 1Ay21* improves grain protein content, but also directs selection of protein candidates for future wheat quality breeding programmes.One sentence summaryIntrogression of the 1Ay21* HMW-GS increases wheat grain protein content and improves bread-making quality in association with a broad reshaping of the grain proteome network.


2012 ◽  
Vol 40 (4) ◽  
pp. 532-541 ◽  
Author(s):  
V. Mladenov ◽  
B. Banjac ◽  
A. Krishna ◽  
M. Milošević

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Saule Kenzhebayeva ◽  
Alfia Abekova ◽  
Saule Atabayeva ◽  
Gulzira Yernazarova ◽  
Nargul Omirbekova ◽  
...  

Deficiency of metals, primarily Fe and Zn, affects over half of the world’s population. Human diets dominated by cereal products cause micronutrient malnutrition, which is common in many developing countries where populations depend heavily on staple grain crops such as wheat, maize, and rice. Biofortification is one of the most effective approaches to alleviate malnutrition. Genetically stable mutant spring wheat lines (M7 generation) produced via 100 or 200 Gy gamma treatments to broaden genetic variation for grain nutrients were analyzed for nutritionally important minerals (Ca, Fe, and Zn), their bioavailability, and grain protein content (GPC). Variation was 172.3–883.0 mg/kg for Ca, 40.9–89.0 mg/kg for Fe, and 22.2–89.6 mg/kg for Zn. In mutant lines, among the investigated minerals, the highest increases in concentrations were observed in Fe, Zn, and Ca when compared to the parental cultivar Zhenis. Some mutant lines, mostly in the 100 Gy-derived germplasm, had more than two-fold higher Fe, Zn, and Ca concentrations, lower phytic acid concentration (1.4–2.1-fold), and 6.5–7% higher grain protein content compared to the parent. Variation was detected for the molar ratios of Ca:Phy, Phy:Fe, and Phy:Zn (1.27–10.41, 1.40–5.32, and 1.78–11.78, respectively). The results of this study show how genetic variation generated through radiation can be useful to achieve nutrient biofortification of crops to overcome human malnutrition.


Sign in / Sign up

Export Citation Format

Share Document