scholarly journals ACE-ADP: Adversarial Contextual Embeddings Based Named Entity Recognition for Agricultural Diseases and Pests

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 912
Author(s):  
Xuchao Guo ◽  
Xia Hao ◽  
Zhan Tang ◽  
Lei Diao ◽  
Zhao Bai ◽  
...  

Entity recognition tasks, which aim to utilize the deep learning-based models to identify the agricultural diseases and pests-related nouns such as the names of diseases, pests, and drugs from the texts collected on the internet or input by users, are a fundamental component for agricultural knowledge graph construction and question-answering, which will be implemented as a web application and provide the general public with solutions for agricultural diseases and pest control. Nonetheless, there are still challenges: (1) the polysemous problem needs to be further solved, (2) the quality of the text representation needs to be further enhanced, (3) the performance for rare entities needs to be further improved. We proposed an adversarial contextual embeddings-based model named ACE-ADP for named entity recognition in Chinese agricultural diseases and pests domain (CNER-ADP). First, we enhanced the text representation and overcame the polysemy problem by using the fine-tuned BERT model to generate the contextual character-level embedded representation with the specific knowledge. Second, adversarial training was also introduced to enhance the generalization and robustness in terms of identifying the rare entities. The experimental results showed that our model achieved an F1 of 98.31% with 4.23% relative improvement compared to the baseline model (i.e., word2vec-based BiLSTM-CRF) on the self-annotated corpus named Chinese named entity recognition dataset for agricultural diseases and pests (AgCNER). Besides, the ablation study and discussion demonstrated that ACE-ADP could not only effectively extract rare entities but also maintain a powerful ability to predict new entities in new datasets with high accuracy. It could be used as a basis for further research on other domain-specific named entity recognition.

Author(s):  
Girish Keshav Palshikar

While building and using a fully semantic understanding of Web contents is a distant goal, named entities (NEs) provide a small, tractable set of elements carrying a well-defined semantics. Generic named entities are names of persons, locations, organizations, phone numbers, and dates, while domain-specific named entities includes names of for example, proteins, enzymes, organisms, genes, cells, et cetera, in the biological domain. An ability to automatically perform named entity recognition (NER) – i.e., identify occurrences of NE in Web contents – can have multiple benefits, such as improving the expressiveness of queries and also improving the quality of the search results. A number of factors make building highly accurate NER a challenging task. Given the importance of NER in semantic processing of text, this chapter presents a detailed survey of NER techniques for English text.


2013 ◽  
pp. 400-426 ◽  
Author(s):  
Girish Keshav Palshikar

While building and using a fully semantic understanding of Web contents is a distant goal, named entities (NEs) provide a small, tractable set of elements carrying a well-defined semantics. Generic named entities are names of persons, locations, organizations, phone numbers, and dates, while domain-specific named entities includes names of for example, proteins, enzymes, organisms, genes, cells, et cetera, in the biological domain. An ability to automatically perform named entity recognition (NER) – i.e., identify occurrences of NE in Web contents – can have multiple benefits, such as improving the expressiveness of queries and also improving the quality of the search results. A number of factors make building highly accurate NER a challenging task. Given the importance of NER in semantic processing of text, this chapter presents a detailed survey of NER techniques for English text.


2020 ◽  
Author(s):  
Vladislav Mikhailov ◽  
Tatiana Shavrina

Named Entity Recognition (NER) is a fundamental task in the fields of natural language processing and information extraction. NER has been widely used as a standalone tool or an essential component in a variety of applications such as question answering, dialogue assistants and knowledge graphs development. However, training reliable NER models requires a large amount of labelled data which is expensive to obtain, particularly in specialized domains. This paper describes a method to learn a domain-specific NER model for an arbitrary set of named entities when domain-specific supervision is not available. We assume that the supervision can be obtained with no human effort, and neural models can learn from each other. The code, data and models are publicly available.


2021 ◽  
pp. 1-10
Author(s):  
Zhucong Li ◽  
Zhen Gan ◽  
Baoli Zhang ◽  
Yubo Chen ◽  
Jing Wan ◽  
...  

Abstract This paper describes our approach for the Chinese Medical named entity recognition(MER) task organized by the 2020 China conference on knowledge graph and semantic computing(CCKS) competition. In this task, we need to identify the entity boundary and category labels of six entities from Chinese electronic medical record(EMR). We construct a hybrid system composed of a semi-supervised noisy label learning model based on adversarial training and a rule postprocessing module. The core idea of the hybrid system is to reduce the impact of data noise by optimizing the model results. Besides, we use post-processing rules to correct three cases of redundant labeling, missing labeling, and wrong labeling in the model prediction results. Our method proposed in this paper achieved strict criteria of 0.9156 and relax criteria of 0.9660 on the final test set, ranking first.


Named Entity Recognition is the process wherein named entities which are designators of a sentence are identified. Designators of a sentence are domain specific. The proposed system identifies named entities in Malayalam language belonging to tourism domain which generally includes names of persons, places, organizations, dates etc. The system uses word, part of speech and lexicalized features to find the probability of a word belonging to a named entity category and to do the appropriate classification. Probability is calculated based on supervised machine learning using word and part of speech features present in a tagged training corpus and using certain rules applied based on lexicalized features.


2020 ◽  
Author(s):  
Usman Naseem ◽  
Matloob Khushi ◽  
Vinay Reddy ◽  
Sakthivel Rajendran ◽  
Imran Razzak ◽  
...  

Abstract Background: In recent years, with the growing amount of biomedical documents, coupled with advancement in natural language processing algorithms, the research on biomedical named entity recognition (BioNER) has increased exponentially. However, BioNER research is challenging as NER in the biomedical domain are: (i) often restricted due to limited amount of training data, (ii) an entity can refer to multiple types and concepts depending on its context and, (iii) heavy reliance on acronyms that are sub-domain specific. Existing BioNER approaches often neglect these issues and directly adopt the state-of-the-art (SOTA) models trained in general corpora which often yields unsatisfactory results. Results: We propose biomedical ALBERT (A Lite Bidirectional Encoder Representations from Transformers for Biomedical Text Mining) - bioALBERT - an effective domain-specific pre-trained language model trained on huge biomedical corpus designed to capture biomedical context-dependent NER. We adopted self-supervised loss function used in ALBERT that targets on modelling inter-sentence coherence to better learn context-dependent representations and incorporated parameter reduction strategies to minimise memory usage and enhance the training time in BioNER. In our experiments, BioALBERT outperformed comparative SOTA BioNER models on eight biomedical NER benchmark datasets with four different entity types. The performance is increased for; (i) disease type corpora by 7.47% (NCBI-disease) and 10.63% (BC5CDR-disease); (ii) drug-chem type corpora by 4.61% (BC5CDR-Chem) and 3.89 (BC4CHEMD); (iii) gene-protein type corpora by 12.25% (BC2GM) and 6.42% (JNLPBA); and (iv) Species type corpora by 6.19% (LINNAEUS) and 23.71% (Species-800) is observed which leads to a state-of-the-art results. Conclusions: The performance of proposed model on four different biomedical entity types shows that our model is robust and generalizable in recognizing biomedical entities in text. We trained four different variants of BioALBERT models which are available for the research community to be used in future research.


2016 ◽  
Vol 12 (4) ◽  
pp. 21-44 ◽  
Author(s):  
R. Hema ◽  
T. V. Geetha

The two main challenges in chemical entity recognition are: (i) New chemical compounds are constantly being synthesized infinitely. (ii) High ambiguity in chemical representation in which a chemical entity is being described by different nomenclatures. Therefore, the identification and maintenance of chemical terminologies is a tough task. Since most of the existing text mining methods followed the term-based approaches, the problems of polysemy and synonymy came into the picture. So, a Named Entity Recognition (NER) system based on pattern matching in chemical domain is developed to extract the chemical entities from chemical documents. The Tf-idf and PMI association measures are used to filter out the non-chemical terms. The F-score of 92.19% is achieved for chemical NER. This proposed method is compared with the baseline method and other existing approaches. As the final step, the filtered chemical entities are classified into sixteen functional groups. The classification is done using SVM One against All multiclass classification approach and achieved the accuracy of 87%. One-way ANOVA is used to test the quality of pattern matching method with the other existing chemical NER methods.


Sign in / Sign up

Export Citation Format

Share Document