scholarly journals Isolation and Characterization of Plant Growth-Promoting Compost Bacteria That Improved Physiological Characteristics in Tomato and Lettuce Seedlings

Agriculture ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 3
Author(s):  
Betsie Martínez-Cano ◽  
Juan Fernando García-Trejo ◽  
Arantza Elena Sánchez-Gutiérrez ◽  
Manuel Toledano-Ayala ◽  
Genaro M. Soto-Zarazúa

Currently, agricultural systems are inadequate to meet the demand of the population, coupled with the constant degradation of natural resources. Therefore, it is necessary to explore alternatives to increase the productivity and quality of crops with minimal environmental impact. The use of plant growth-promoting bacteria can provide solutions to some agri-environmental problems and replace or minimize conventional agricultural practices. In this study, a Bacillus pumilus strain with plant growth-promoting properties was isolated from mature compost. In vitro, the ability of Bacillus pumilus to solubilize phosphate, inhibit the growth of phytopathogenic fungi, and its effect on the germination of tomato and lettuce seeds was evaluated. In vivo, its effect on stem thickness, height, and the number of leaves of tomato and lettuce seedlings was studied. The results show that, in vitro, Bacillus pumilus solubilizes phosphate, inhibits the growth of the fungus Fusarium oxysporum, and increases the germination percentage of tomato seeds. The results, in vivo, demonstrate that the bacteria increases the stem thickness of tomato seedlings, while, in lettuce, it increases the stem thickness and the number of leaves. The outcome implies that Bacillus pumilus has properties as a plant growth promoter and can be used as a promising inoculant to enhance the growth of tomato and lettuce seedlings.

2020 ◽  
Vol 21 (12) ◽  
Author(s):  
Lamia AOUAR ◽  
INAS BOUKELLOUL ◽  
ABDERRAHMANE BENADJILA

Abstract. Aouar L, Boukelloul I, Benadjila A. 2020. Identification of antagonistic Streptomyces strains isolated from Algerian Saharan soils and their plant growth promoting properties. Biodiversitas 21: 5672-5683. To produce new bioactive substances of agricultural interest, extreme ecosystems can be a source of unexplored microorganisms. Accordingly, in this study, twenty-two actinobacteria strains were obtained from rhizospheric arid soils of palm groves collected from Biskra and El Oued in the Algerian Sahara. All isolates were examined for the in vitro antifungal potential towards phytopathogenic fungi: Aspergillus flavus, Verticillium dahlia, Rhizoctonia solani, Botrytis cinerea and Fusarium oxysporum as well as for their antibacterial property toward phytopathogenic bacteria: Streptomyces scabiei, Pectobacterium carotovorum and Agrobacterium tumefaciens. The three isolates (13%) that inhibited at least five pathogens were then selected, identified and assessed for their attributes to produce indole-3-acetic acid (IAA) and siderophores, to solubilize phosphate, and to antagonize Streptomyces scabiei in vivo. According to phylogenetic analysis performed with 16S rDNA sequence, chemotaxonomy and phenotypic characteristics, the strain SO1, which inhibited all tested pathogens, was assigned to Streptomyces flaveus. While, strains SO2 and SB1 were affiliated to Streptomyces enissocaesilis and Streptomyces albidoflavus, respectively. All strains produced IAA but only SO1 and SB1 were able to elaborate siderophores catecholate-type. Two strains SO1 and SO2 exhibited a capacity to solubilize phosphate and SO1 was able to suppress the pathogenic effect of Streptomyces scabiei on radish seedlings. The findings indicate that SO1 strain may reveal the potential for use as a biocontrol agent and plant growth promoter.


2015 ◽  
Vol 3 (3) ◽  
pp. 552-560 ◽  
Author(s):  
Mohamed A.M. El-Awady ◽  
Mohamed M. Hassan ◽  
Yassin M. Al-Sodany

This study was designed to isolate and characterize endophytic and rhizospheric bacteria associated with the halophyte plant Sesuvium verrucosum, grown under extreme salinity soil in Jeddah, Saudi Arabia. The plant growth promotion activities of isolated bacterial were evaluated in vitro. A total of 19 salt tolerant endophytic and rhizospheric bacterial isolates were obtained and grouped into six according to genetic similarity based on RAPD data. These six isolates were identified by amplification and partial sequences of 16S rDNA as Enterobacter cancerogenus,Vibrio cholerae, Bacillus subtilis, Escherichia coli and two Enterobacter sp. Isolates were then grown until exponential growth phase to evaluate the atmospheric nitrogen fixation, phosphate solubilization, and production of phytohormones such as indole-3-acetic acid, as well as 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. While, All of the six strains were negative for ACC deaminaseactivity, two isolates showed Nitrogen fixation activity, three isolates produce the plant hormone (Indole acetic acid) and two isolates have the activity of solubiliztion of organic phosphate. Among the six isolates, the isolate (R3) from the soil around the roots is able to perform the three previous growth promoting possibilities together and it is ideal for use in promoting the growth of plants under the high salinity conditions. This isolate is candidate to prepare a friendly biofertelizer that can be used for the improvement of the crops performance under salinity conditions.Int J Appl Sci Biotechnol, Vol 3(3): 552-560


2019 ◽  
Vol 7 (3) ◽  
pp. 82 ◽  
Author(s):  
Oyungerel Natsagdorj ◽  
Hisayo Sakamoto ◽  
Dennis Santiago ◽  
Christine Santiago ◽  
Yoshitake Orikasa ◽  
...  

Utilization of plant growth-promoting bacteria colonizing roots is environmentally friendly technology instead of using chemicals in agriculture, and understanding of the effects of their colonization modes in promoting plant growth is important for sustainable agriculture. We herein screened the six potential plant growth-promoting bacteria isolated from Beta vulgaris L. (Rhizobium sp. HRRK 005, Polaromonas sp. HRRK 103, Variovorax sp. HRRK 170, Mesorhizobium sp. HRRK 190, Streptomyces sp. HRTK 192, and Novosphingobium sp. HRRK 193) using a series of biochemical tests. Among all strains screened, HRRK 170 had the highest potential for plant growth promotion, given its ability to produce plant growth substances and enzymes such as siderophores and 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase, respectively, concomitantly with active growth in a wider range of temperatures (10–30 °C) and pH (5.0–10.0). HRRK 170 colonized either as spots or widely on the root surface of all vegetable seedlings tested, but significant growth promotion occurred only in two vegetables (Chinese cabbage and green pepper) within a certain cell density range localized in the plant roots. The results indicate that HRRK 170 could function as a plant growth promoter, but has an optimum cell density for efficient use.


AoB Plants ◽  
2019 ◽  
Vol 11 (4) ◽  
Author(s):  
Sajid Masood ◽  
Xue Qiang Zhao ◽  
Ren Fang Shen

AbstractThe present study was carried out to investigate how plant growth-promoting bacteria (PGPB) influence plant growth and uptake of boron (B) and phosphorus (P) in rapeseed (Brassica napus). Rapeseed was subjected to control, B, P and B + P treatments, either with or without B. pumilus (PGPB) inoculation, and grown in pot culture for 6 weeks. In the absence of B. pumilus, the addition of B, P or both elements improved the growth of rapeseed compared with the control. Interestingly, B. pumilus inoculation inhibited plant growth and enhanced B uptake under B and B + P but not under control and P conditions. In addition, B. pumilus inoculation decreased the pH of soil under B and B + P supplies. Bacillus pumilus inoculation thus increased rapeseed B uptake and inhibited growth under B supply, which suggests that the effects of PGPB on rapeseed growth depend on the addition of B to soil. Bacillus pumilus inoculation may therefore be recommended for the enhancement of rapeseed B levels in B-deficient soils but not in B-sufficient ones.


2013 ◽  
Vol 172 (4) ◽  
pp. 1735-1746 ◽  
Author(s):  
Asma Ait-Kaki ◽  
Noreddine Kacem-Chaouche ◽  
Marc Ongena ◽  
Mounira Kara-Ali ◽  
Laid Dehimat ◽  
...  

Plants ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1109
Author(s):  
Nandni Sharma ◽  
Kanika Khanna ◽  
Rajesh Kumari Manhas ◽  
Renu Bhardwaj ◽  
Puja Ohri ◽  
...  

Root-knot nematodes (RKN), Meloidogyne sp. hinders functioning of crops and causes global losses in terms of productivity and yield. Meloidogyne sp. are microscopic, obligatory endoparasites with ubiquitous distribution in different parts of the world. Taking into consideration these aspects, the present study was conducted to explore nematicidal activity of the Streptomyces hydrogenans strain DH-16 against M. incognita to regulate its pathogenicity in plants. In-vitro experimentation revealed that pretreated seeds with solvent and culture supernatant lowered root galls in infested plants and promoted growth of Solanum lycopersicum seedlings, revealed through the morphological analysis. Additionally, antioxidative defense responses were induced with microbes. However, oxidative stress markers were considerably reduced after microbial inoculations. Apart from this, secondary metabolites were assessed and modulated in RKN infested plants on microbial supplementations. Confocal studies evaluated glutathione accumulation within root apices and its enhancement was directly proportional to defense responses. Therefore, the current study concluded the role of S. hydrogenans in stimulating antioxidant potential against RKN along with growth promoting aids. Thus, the outcome of the current study endorses that metabolites produced by S. hydrogenans can be used as safe biocontrol agents against M. incognita and also as plant growth promoting agents.


2018 ◽  
Vol 14 (2) ◽  
pp. 75-80
Author(s):  
Yatni Yatni ◽  
Gratiana N C Tuhumury ◽  
Christoffol Leiwakabessy

Sago is a staple plant of the people of Maluku and Papua, which have many benefits and advantages to continue to be developed. Endophytic bacteria are bacteria that live in plant tissues and colonize the intercellular and vascular systems. This study aims to obtain endophytic bacterial isolates from parts of the roots, stems, and leaves of sago plants which have the potential as agents for plant growth promoting bacteria. Endophytic bacteria are isolated from the roots, stems, and leaves. Based on the results of isolation, 21 isolates of endophytic bacteria were found. Then, the selection is done by hypersensitivity test and gram reaction test. The results of the selection obtained 20 isolates of endophytic bacteria that were not pathogenic. After that, it was followed by plant growth promoting test for endophytic bacterial isolates. The test results were obtained three isolates potentially as plant growth promoter that is STA1, STA6, and STA11. Keywords: endophytic bacteria, plant growth promoting, sago   ABSTRAK Tanaman sagu merupakan tanaman pokok masyarakat Maluku dan Papua, yang memiliki banyak manfaat dan keunggulan untuk terus dikembangkan. Bakteri endofit adalah bakteri yang hidup di dalam jaringan tanaman dan berkoloni pada daerah ruang interseluler dan sistem vascular. Penelitian ini bertujuan untuk mendapatkan isolat bakteri endofit dari bagian akar,batang dan daun tanaman sagu yang berpotensi sebagai agens pemacu pertumbuhan tanaman. Bakteri endofit diisolasi dari bagian akar, batang, dan daun. Berdasarkan hasil isolasi yang telah dilakukan didapati 21 isolat bakteri endofit. Kemudian seleksi dilakukan dengan uji hipersensitif dan uji reaksi gram. Hasil seleksi diperoleh 20 isolat bakteri endofit yang bukan patogen. Setelah itu dilanjutkan dengan uji pemacu pertumbuhan tanaman terhadap isolat bakteri endofit. Hasil pengujian tersebut diperoleh tiga isolat bakteri yang berpotensi sebagai pemacu pertumbuhan tanaman yaitu STA1, STA6, dan STA11. Kata kunci: bakteri endofit, pemacu pertumbuhan tanaman, sagu


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Mariana S. Santos ◽  
Artur B. L. Rondina ◽  
Marco A. Nogueira ◽  
Mariangela Hungria

Seed treatment with chemical pesticides is commonly used as an initial plant protection procedure against pests and diseases. However, the use of such chemicals may impair the survival and performance of beneficial microorganisms introduced via inoculants, such as the plant growth-promoting bacterium Azospirillum brasilense. We assessed the compatibility between the most common pesticide used in Brazil for the treatment of maize seeds, composed of two fungicides, and one insecticide, with the commercial strains Ab-V5 and Ab-V6 of A. brasilense, and evaluated the impacts on initial plant development. The toxicity of the pesticide to A. brasilense was confirmed, with an increase in cell mortality after only 24 hours of exposure in vitro. Seed germination and seedling growth were not affected neither by the A. brasilense nor by the pesticide. However, under greenhouse conditions, the pesticide affected root volume and dry weight and root-hair incidence, but the toxicity was alleviated by the inoculation with A. brasilense for the root volume and root-hair incidence parameters. In maize seeds inoculated with A. brasilense, the pesticide negatively affected the number of branches, root-hair incidence, and root-hair length. Therefore, new inoculant formulations with cell protectors and the development of compatible pesticides should be searched to guarantee the benefits of inoculation with plant growth-promoting bacteria.


1998 ◽  
Vol 44 (6) ◽  
pp. 528-536 ◽  
Author(s):  
V K Sharma ◽  
J Nowak

The potential utilization of a plant growth promoting rhizobacterium, Pseudomonas sp. strain PsJN, to enhance the resistance of tomato transplants to verticillium wilt was investigated. Plant growth and disease development were tested on the disease-susceptible cultivar Bonny Best after Verticillium dahliae infection of tissue culture plantlets bacterized in vitro (by co-culturing with the bacterium) and seedlings bacterized in vivo (after 3 weeks growth in the greenhouse). Significant differences in both disease suppression and plant growth were obtained between in vitro bacterized and nonbacterized (control) plants. The degree of protection afforded by in vitro bacterization depended on the inoculum density of V. dahliae; the best and worst protection occurred at the lowest (103 conidia ·mL-1) and highest (106 conidia ·mL-1) levels, respectively. In contrast, the in vivo bacterized tomatoes did not show plant growth promotion when compared to the nonbacterized control plants. When challenged with Verticillium, significant growth differences between in vivo bacterized plants (26.8% for shoot height) and nonbacterized controls were only seen at the 3rd week after inoculation. Compared with the in vitro inoculation, there was no delay in the verticillium wilt symptom expression, even at the lowest concentration of V. dahliae, by in vivo PsJN inoculation. These results suggest that endophytic colonization of tomato tissues is required for the Verticillium-resistance responses. Plant growth promotion preceeds the disease-resistance responses and may depend on the colonization thresholds and subsequent sensitization of hosts.Key words: Pseudomonas sp., plant growth promoting rhizobacterium, Verticillium dahliae, tomato, colonization, plant growth promotion, disease suppression.


Sign in / Sign up

Export Citation Format

Share Document