scholarly journals Effects of Calcium, Magnesium and Potassium on Sweet Basil Downy Mildew (Peronospora belbahrii)

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 688
Author(s):  
Yigal Elad ◽  
Ziv Kleinman ◽  
Ziv Nisan ◽  
Dalia Rav-David ◽  
Uri Yermiyahu

Downy mildew (Peronospora belbahrii) is a major disease of sweet basil (Ocimum basilicum). We examined the effects of potassium, calcium and magnesium, individually and in combination, on sweet basil downy mildew (SBDM) in potted plants and under commercial-greenhouse conditions over six growing seasons. An increased K concentration in the fertigation solution increased SBDM severity, whereas foliar-applied KCl and K2SO4 suppressed SBDM. The application of higher concentrations of those salts increased the K concentrations in the shoots and significantly alleviated SBDM. Increased concentrations of Ca or Mg in the fertigation solution decreased SBDM severity, as did foliar-applied CaCl2. However, the combination of Ca and Mg did not have any synergistic effect. Foliar-applied K2SO4 provided better disease suppression than some of these treatments. The 3.3 mM Mg + fungicide treatment and the 5.0 mM Mg + fungicide treatment each provided synergistic disease control in one of two experiments. SBDM severity was significantly reduced by MgCl2 and MgSO4 (both 3.3 mM Mg), as compared with the basic Mg fertigation (1.6 mM), with MgCl2 providing better control. The combined Mg salts + fungicide treatments reduced SBDM better than any of those treatments alone. These results demonstrate that macro-elements can contribute to SBDM control.

Plant Disease ◽  
2014 ◽  
Vol 98 (11) ◽  
pp. 1579-1579 ◽  
Author(s):  
I. Šafránková ◽  
L. Holková

Sweet basil (Ocimum basilicum L.) is an aromatic plant that is cultivated as a pot plant in greenhouses or in fields in the Czech Republic. The plants are intended for direct consumption or for drying. In April of 2012, the first large chlorotic from the middle necrotic spots occurred gradually on leaves of pot plants O. basilicum cv. Genovese in greenhouses in Central Bohemia. The characteristic gray to brown furry growth of downy mildew appeared on abaxial surfaces of leaves in the place of chlorotic spots within 3 to 4 days. The infested leaves fell off in the late stages of pathogenesis. The infestation gradually manifested itself in ever-younger plants and in July, cotyledons and possibly the first true leaves were already heavily infected and damaged and these plants rapidly died. The plant damage reached 80 to 100%, so it was necessary to stop growing the plants in the greenhouse at the end of July. The causal agent was isolated and identified as Peronospora belbahrii Thines by means of morphological and molecular characters (2,3). Conidiophores were hyaline, straight, monopodial, 280 to 460 μm, branched three to five times, ended with two slightly curved branchlets with a single conidia on each branchled tip. The longer branchlets measured 13 to 24 μm (average 18.2 μm), the shorter one 4 to 15 μm (average 9.7 μm). Conidia were rounded or slightly ovoid, from brownish to dark brownish, measured 22 to 31 × 20 to 28 μm (length/width ratio 1.2). A pathogen-specific sequence was detected with the help of the pathogen ITS rDNA specific primers in symptomatic leaves (1). DNA from plant tissues was isolated using the DNeasy plant Mini Kit (Qiagen, Germany) following the standard protocol. PCR was performed using KAPA2G Robust HotStar kit (Kapa Biosystems, United States) according to the conditions recommended in Belbahri et al. (1). The specific products were visualized by electrophoresis through 1.5% agarose gels. Leaves of 20-day-old potted plants O. basilicum ‘Genovese’ were inoculated by spraying with 5 × 105 conidia/ml of the pathogen. Each pot contained 10 plants. Sterilized distilled water was applied to control plants. Plants were covered with polyethylene bags during the entire incubation period to maintain high humidity, and kept at a temperature of 22 to 24°C. Typical disease symptoms appeared on leaves 5 to 9 days after inoculation. Control plants were symptomless. P. belbahrii was re-isolated from the lesions of inoculated plants, thus fulfilling Koch's postulates. Downy mildew on sweet basil was reported in countries in Africa, Europe, and South and North America (4). To our knowledge, this is the first report of downy mildew on sweet basil in the Czech Republic. References: (1) L. Belbahri et al. Mycol. Res. 109:1276, 2005. (2) Y.-J. Choi et al. Mycol. Res. 113:1340, 2009. (3) M. Thines et al. Mycol. Res. 113:532, 2009. (4) C. A. Wyenandt et al. HortScience 45:1416, 2010.


2015 ◽  
Vol 105 (8) ◽  
pp. 1059-1068 ◽  
Author(s):  
Uri Yermiyahu ◽  
Lior Israeli ◽  
Dalia Rav David ◽  
Inna Faingold ◽  
Yigal Elad

Nutritional elements can affect plant susceptibility to plant pathogens, including Botrytis cinerea. We tested the effect of potassium (K) fertilization on gray mold in sweet basil grown in pots, containers, and soil. Increased K in the irrigation water and in the sweet basil tissue resulted in an exponential decrease in gray mold severity. Potassium supplied to plants by foliar application resulted in a significant decrease in gray mold in plants grown with a low rate of K fertigation. Lower K fertigation resulted in a significant increase in B. cinerea infection under semi-commercial conditions. Gray mold severity in harvested shoots was significantly negatively correlated with K concentration in the irrigation solution, revealing resistance to B. cinerea infection as a result of high K concentration in sweet basil tissue. Gray mold was reduced following K foliar application of the plants. In general, there was no synergy between the fertigation and foliar spray treatments. Proper K fertilization can replace some of the required chemical fungicide treatments and it may be integrated into gray mold management for improved disease suppression.


Plant Disease ◽  
2014 ◽  
Vol 98 (2) ◽  
pp. 283-283 ◽  
Author(s):  
L. Kanetis ◽  
A. Vasiliou ◽  
G. Neophytou ◽  
S. Samouel ◽  
D. Tsaltas

Sweet basil (Ocimum basilicum L.) is an economically important annual aromatic plant, grown mostly for culinary use for both fresh and dry consumption and as a source of essential oil. In Cyprus, approximately 4 ha are grown annually, either in greenhouses as a year-round crop or in open fields from April to November, and the majority of the production is exported to the European market. During May 2012, a sweet basil cv. Genovese Gigante greenhouse operation in the area of Limassol was severely affected by a foliar disease, causing almost 100% crop losses. Within a few days, a similar, heavy disease incidence was also reported from a nearby greenhouse facility on the Genovese-type cultivars Superbo, Aroma 2, and Bonazza, as well as on Thai basil (O. basilicum var. thyrsiflorum). Successively, destructive hits of similar symptomatology have been reported from other areas and since then the disease appears to have been well-established in the country, causing major economic damages. It is also noteworthy to mention that in greenhouse infections the disease remains active even during winter, considering the mild environmental conditions and the monoculture fashion followed. Symptoms appeared on the leaves initially as interveinal, zonal, chlorotic lesions, followed by the appearance of a fuzzy, purplish sporulation on the abaxial side. Progressively, infected leaves curled and sporadic necrotic spots were evident and finally abscised. Light microscopic examination of infected samples revealed the presence of straight, hyaline sporangiophores (n = 15) typical of downy mildew, 210 to 590 μm long (mean = 350.7 μm; SD ± 117.5 μm) × 12 to 15 μm wide (mean = 13.1 μm; SD ± 1.4 μm). Sporangiophores were monopodially branched three to five times, terminating with curved branchlets bearing single sporangia at their tips. The sporangia (n = 25) were purplish-grey, ovoid to subglobose, and measured 32 to 22 μm in length (mean = 27.2 μm; SD ± 2.8 μm) and 30 to 10 μm in breadth (mean = 21.7 μm; SD ± 4.8 μm). Based on these morphological characteristics, the causal agent was identified as Peronospora belbahrii Thines (1,4). Furthermore, genomic DNA was extracted from infected plant tissue from eight different samples according to Dellaporta et al. (2). The complete ITS rDNA region was amplified and sequenced using primers ITS5 and ITS4 (3). Two of the consensus sequences were deposited in GenBank (Accession Nos. KF419289 and KF419290) and a BLAST analysis in the NCBI database revealed 99% similarity to all of the P. belbahrii sequences and other Peronospora sp. previously reported on sweet basil (Accession Nos. AY831719, DQ479408, FJ394336, and FJ436024). In a pathogenicity trial, five 40-day-old potted sweet basil plants were spray-inoculated with a sporangial suspension (1 × 105 sporangia/ml) until runoff, bagged for 24 h, and placed in a growth chamber at 18°C. Subsequently, the plastic bags were removed and the plants were kept at 22°C with a 16-h photoperiod and 80% relative humidity. Additionally, five plants were water-sprayed and served as controls. Typical downy mildew symptoms appeared 6 to 8 days after inoculation, while the uninoculated plants remained disease-free. To our knowledge, this is first report of downy mildew on sweet basil in Cyprus. References: (1) L. Belbahri et al. Mycol. Res. 109:1276, 2005. (2) S. L. Dellaporta et al. Plant Mol. Biol. Rep., 1:19, 1983. (3) G. Nagy and A. Horvat, Plant Dis. 93:1999, 2009. (4) M. Thines et al. Mycol. Res. 113:532, 2009.


2021 ◽  
Vol 3 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Yee Chen Low ◽  
Michael A. Lawton ◽  
James E. Simon ◽  
Rong Di

Sweet basil (Ocimum basilicum L.) downy mildew disease (DM) caused by Peronospora belbahrii is a worldwide threat to the basil industry due to the lack of natural genetic resistance in sweet basil germplasm collections. In this study, we used CRISPR-gene editing to modify the sweet basil DM susceptibility gene homoserine kinase (ObHSK). Gene-edited plants challenged with P. belbahrii displayed a significantly reduced susceptibility to DM, based on phenotypic disease indices and on in planta pathogen load. These results suggest that ObHSK plays a role in conditioning DM susceptibility, similar to that observed for the AtHSK gene in Arabidopsis. These results demonstrate the utility of CRISPR-gene editing in enhancing DM resistance and contributing to sweet basil breeding programs.


Plants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1793
Author(s):  
Yigal Elad ◽  
Ziv Nisan ◽  
Ziv Kleinman ◽  
Dalia Rav-David ◽  
Uri Yermiyahu

We recently demonstrated that spraying or irrigating with Ca, Mg and K reduces the severity of sweet basil downy mildew (SBDM). Here, the effects of Mn, Zn, Cu and Fe on SBDM were tested in potted plants. The effects of Mn and Zn were also tested under semi-commercial and commercial-like field conditions. Spray applications of a mixture of EDTA-chelated microelements (i.e., Fe-EDTA, Mn-EDTA, Zn-EDTA, Cu-EDTA and Mo) reduces SBDM severity. The application of EDTA chelates of individual microelements (i.e., Fe-EDTA, Mn-EDTA and Zn-EDTA) significantly reduces SBDM in potted plants. Foliar applications of Mn-EDTA and Zn-EDTA are found to be effective under semi-commercial conditions and were, thus, further tested under commercial-like conditions. Under commercial-like conditions, foliar-applied Mn-EDTA and Zn-EDTA decreased SBDM severity by 46–71%. When applied through the irrigation solution, those two microelements reduce SBDM by more than 50%. Combining Mg with Mn-EDTA and Zn-EDTA in the irrigation solution does not provide any additional disease reduction. In the commercial-like field experiment, the microelement-mixture treatment, applied as a spray or via the irrigation solution, was combined with fungicides spray treatments. This combination provides synergistic disease control. The mode of action in this plant–pathogen system may involve features of altered host resistance.


Plant Disease ◽  
2005 ◽  
Vol 89 (6) ◽  
pp. 683-683 ◽  
Author(s):  
A. Garibaldi ◽  
A. Minuto ◽  
M. L. Gullino

Sweet basil (Ocimum basilicum) is an economically important herb in several Mediterranean countries. Approximately 30 ha are grown annually in France for fresh and processed consumption. During the spring and fall of 2004, a damaging foliar disease was observed in some crops near Saint Tropez in the French Riviera Region. More than 50% of plants were affected in an organically produced field-grown crop at an altitude of 250 m. Leaves of infected plants were initially slightly chlorotic, especially near the central vein. Within 2 to 3 days, a characteristic gray, furry growth was evident on the lower leaf surface and sometimes on the upper leaf surface. The appearance and severity of the disease was affected by overhead sprinkler irrigation. Basal leaves were severely affected. Microscopic observations revealed sporangiophores branching two to seven times. Sporangiophores, with a length of 250 to 500 μm (average 350 μm), ended with sterigmata bearing single sporangia. Sporangia measured 15 to 25 × 20 to 35 μm (average 22 × 28 μm), were elliptical and grayish in mass. The pathogen was identified as Peronospora sp. on the basis of its morphological characteristics (4). Pathogenicity was confirmed by inoculating leaves of 40-day-old healthy plants with a sporangial suspension (1 × 105 conidia/ml). Three containers with 150 plants each of O. basilicum cv Genovese gigante were used as replicates. Noninoculated plants served as controls. Plants were maintained in a growth chamber at 20°C (12 h of light per day) and 90 to 95% relative humidity. The pathogenicity test was carried out twice. After 6 days, typical symptoms of downy mildew developed on the inoculated plants, and Peronospora sp. was observed on the leaves. Noninoculated plants did not show symptoms. To our knowledge, this is the first report of Peronospora sp. on basil in France. Peronospora sp. was previously reported on sweet basil in Italy (1) and P. lamii on sweet basil in Uganda (3). Seed transmission (2) is suspected as the reason for recent outbreaks in Europe. References: (1) A. Garibaldi et al. Plant Dis. 88:312, 2004. (2) A. Garibaldi et al. Z. Pflanzenkr. Pflanzenschutz 111:465, 2004 (3) C. G. Hansford. Rev. Appl. Mycol. 12:421, 1933. (4) D. M. Spencer. The Downy Mildews. Academic Press, NY, 1981.


Sign in / Sign up

Export Citation Format

Share Document