scholarly journals Epiphytic Microbial Community and Post-Harvest Characteristics of Strawberry Fruits as Affected by Plant Nutritional Regime with Silicon

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2407
Author(s):  
Fabio Valentinuzzi ◽  
Youry Pii ◽  
Luigimaria Borruso ◽  
Tanja Mimmo ◽  
Edoardo Puglisi ◽  
...  

Despite being not essential to plants, Silicon (Si) has proven to have promoting effects on plants growth, yield, and resistance against biotic and abiotic stressors. The increase of concentration in specific minerals in plant tissues can also improve shelf-life, which, in fruits like strawberries, is also affected by the epiphytic microbial community. The present research was carried out to assess whether Si biofortification of strawberry plants, grown in soilless system, could affect plants yield and post-harvest feature of fruits during the storage period, carried out at three different temperatures (i.e., 1, 4 and 10 °C) for 7 and 14 days. Furthermore, we investigated whether the plant nutritional regime, specifically the Si fertilization, can impact the composition of microbial community. Our results showed that biofortification did not significantly affect fruits firmness, whereas, at the highest Si levels, an increase in titratable acidity was observed. The microbial community analysis highlighted for the first time the presence of probiotic bacteria, as Bacillus breve, which could present interesting technological features as strains adapted to the strawberry fruit-sphere. In addition, with the increasing levels of Si biofortification, the depletion of potentially pathogenic microorganisms, like Escherichia coli and Terrisporobacter glycolicus, was also observed. In conclusion, data here reported highlight for the first time the possible role played by the nutritional regimes of strawberry plants in shaping composition of the fruit epiphytic microbial community.

2012 ◽  
Vol 9 (4) ◽  
pp. 5177-5203 ◽  
Author(s):  
L.-Y. Wang ◽  
R.-Y. Duan ◽  
J.-F. Liu ◽  
S.-Z. Yang ◽  
J.-D. Gu ◽  
...  

Abstract. Temperature is one of the most important environmental factors regulating the activity and determining the composition of the microbial community. Analysis of microbial communities from six water-flooding petroleum reservoirs at temperatures from 20 to 63 °C by 16S rRNA gene clone libraries indicates the presence of physiologically diverse and temperature-dependent microorganisms in these subterrestrial ecosystems. In high-temperature petroleum reservoirs, most of the archaeal sequences belong to the thermophilic archaea including the genera Thermococcus, Methanothermobacter and Thermoplasmatales, most of the bacterial sequences belong to the phyla Firmicutes, Thermotogae and Thermodesulfobacteria; in low-temperature petroleum reservoirs, most of the archaeal sequences are affiliated with the genera Methanobacterium, Methanoculleus and Methanocalculus, most of the bacterial sequences to the phyla Proteobacteria, Bacteroidetes and Actinobacteria. Canonical correspondence analysis (CCA) revealed that temperature, mineralization, ionic type as well as volatile fatty acids showed correlation with the microbial community structures. These organisms may be adapted to the environmental conditions of these petroleum reservoirs over geologic time by metabolizing buried organic matter from the original deep subsurface environment and became the common inhabitants in subsurface environments.


ACS Omega ◽  
2021 ◽  
Author(s):  
Nan Liu ◽  
Ying-ying Li ◽  
Du-juan Ouyang ◽  
Chang-yong Zou ◽  
Wei Li ◽  
...  

2013 ◽  
Vol 80 (1) ◽  
pp. 177-183 ◽  
Author(s):  
Lavane Kim ◽  
Eulyn Pagaling ◽  
Yi Y. Zuo ◽  
Tao Yan

ABSTRACTThe impact of substratum surface property change on biofilm community structure was investigated using laboratory biological aerated filter (BAF) reactors and molecular microbial community analysis. Two substratum surfaces that differed in surface properties were created via surface coating and used to develop biofilms in test (modified surface) and control (original surface) BAF reactors. Microbial community analysis by 16S rRNA gene-based PCR-denaturing gradient gel electrophoresis (DGGE) showed that the surface property change consistently resulted in distinct profiles of microbial populations during replicate reactor start-ups. Pyrosequencing of the bar-coded 16S rRNA gene amplicons surveyed more than 90% of the microbial diversity in the microbial communities and identified 72 unique bacterial species within 19 bacterial orders. Among the 19 orders of bacteria detected,BurkholderialesandRhodocyclalesof theBetaproteobacteriaclass were numerically dominant and accounted for 90.5 to 97.4% of the sequence reads, and their relative abundances in the test and control BAF reactors were different in consistent patterns during the two reactor start-ups. Three of the five dominant bacterial species also showed consistent relative abundance changes between the test and control BAF reactors. The different biofilm microbial communities led to different treatment efficiencies, with consistently higher total organic carbon (TOC) removal in the test reactor than in the control reactor. Further understanding of how surface properties affect biofilm microbial communities and functional performance would enable the rational design of new generations of substrata for the improvement of biofilm-based biological treatment processes.


2017 ◽  
Vol 262 ◽  
pp. 135-138 ◽  
Author(s):  
Carlos L. Aspiazu ◽  
Paulina Aguirre ◽  
Sabrina Hedrich ◽  
Axel Schippers

In a mine owned by the company Orenas S.A. (Equador), a biooxidation process for gold recovery has been developed. Refractory gold ore was crushed, milled and 500 ton of flotation concentrate was agglomerated by coating a support rock. This was piled up on a liner and the biooxidation process in the heap of 35x25x6 m3 was run for approximately 150 days. The oxidized material was subsequently removed for further processing. An outcrop allowed for depth dependent sampling of altogether 36 samples at three sites over the complete depth of 6 m. The fine fraction was removed from the host rock and sent to the laboratory for analysis of the microbial community. The pH ranged between 2.2 and 2.9. Total cell counts determined via counting under a fluorescence microscope after SYBR Green staining indicated a high microbial colonialization of the heap in all depths between 106 to 109 cells per g concentrate, however the highest cell numbers were mainly found in the upper 50 cm. Most-probable-number determination of living, acidophilic iron (II)-oxidizers for one site also revealed a decrease of cell numbers with depth (between 104 to 108 cells per g concentrate). Further molecular analyses of the community composition based on extracted DNA and 16S rRNA gene analyses by TRFLP and qPCR revealed a complex archaeal and bacterial community within the heap. It can be stated that an active community of acidophiles runs the biooxidation process in all sampled parts of the heap.


Sign in / Sign up

Export Citation Format

Share Document