scholarly journals Sensor-Based Irrigation Reduces Water Consumption without Compromising Yield and Postharvest Quality of Soilless Green Bean

Agronomy ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2485
Author(s):  
Michela Palumbo ◽  
Massimiliano D’Imperio ◽  
Vincenzo Tucci ◽  
Maria Cefola ◽  
Bernardo Pace ◽  
...  

Real-time monitoring of substrate parameters in the root-zone through dielectric sensors is considered a promising and feasible approach for precision irrigation and fertilization management of greenhouse soilless vegetable crops. This research investigates the effects of timer-based (TIMER) compared with dielectric sensor-based irrigation management with different irrigation set-points [SENSOR_0.35, SENSOR_0.30 and SENSOR_0.25, corresponding to substrate volumetric water contents (VWC) of 0.35, 0.30 and 0.25 m3 m−3, respectively] on water use, crop performance, plant growth and physiology, product quality and post-harvest parameters of soilless green bean (Phaseolus vulgaris L., cv Maestrale). In SENSOR treatments, an automatic system managed irrigation in order to maintain substrate moisture constantly close to the specific irrigation set-point. The highest water amount was used in TIMER treatment, with a water saving of roughly 36%, 41% and 47% in SENSOR_0.35, SENSOR_0.30 and SENSOR_0.25, respectively. In TIMER, the leaching rate was ≈31% of the total water consumption, while little leaching (<10%) was observed in SENSOR treatments. TIMER and SENSOR_0.35 resulted in similar plant growth and yield, while irrigation set-points corresponding to lower VWC values (SENSOR_0.30 and SENSOR_0.25) resulted in inadequate water availability conditions and impaired the crop performance. The study confirms that rational sensor-based irrigation allows to save water without compromising anyhow the product quality. In SENSOR irrigation management, in fact, especially in the case of optimal water availability conditions, it was possible to obtain high quality pods, with fully satisfactory characteristics during storage at 7 °C for 15 days.

1990 ◽  
Vol 59 (3) ◽  
pp. 413-418 ◽  
Author(s):  
Shuji IIDA ◽  
Yoshio SHINMURA ◽  
Akira UEMORI ◽  
Kozo KUZUNA

1999 ◽  
Vol 9 (1) ◽  
pp. 133a
Author(s):  
Jonathan M. Frantz ◽  
Gregory E. Welbaum ◽  
Zhengxing Shen ◽  
Ron Morse

“Float-bed” (FB) is a simple hydroponic system used by the tobacco industry for transplant production. “Ebb-and-flood” (EF) is a modified FB system with periodic draining of the bed to limit water availability and control plant growth. Field-bed cabbage (Brassica oleracea L. gp. Capitata) transplant production was compared with FB, EF, and overhead-irrigated plug-tray greenhouse systems. Plants were produced in May and June and transplanted in a field near Blacksburg, Va., in June and July of 1994 and 1995, respectively. Beds for FB and EF production consisted of galvanized metal troughs (3.3 × 0.8 × 0.3 m) lined with a double layer of 0.075-mm-thick black plastic film. In 1994, both EF and FB seedlings were not hardened before transplanting, were severely stressed after transplanting, and had higher seedling mortality compared with plants from other systems. Plug-tray transplants showed the greatest increase in leaf area following transplanting and matured earlier than seedlings produced in other systems. In 1995, EF- and FB-grown cabbage plants were hardened by withholding water before transplanting, and seedlings had greater fresh mass and leaf area than plug-tray or field-bed seedlings 3.5 weeks after transplanting. Less succulent cabbage transplants were grown in EF and FB systems containing 66 mg·L-1 N (40% by nitrate) and 83 mg·L-1 K. Compared with the FB system, the EF system allowed control of water availability, which slowed plant growth, and increased oxygen concentration in the root zone. Both EF and FB systems are suitable for cabbage transplant production.


HortScience ◽  
1998 ◽  
Vol 33 (6) ◽  
pp. 976-979 ◽  
Author(s):  
Jonathan M. Frantz ◽  
Gregory E. Welbaum ◽  
Zhengxing Shen ◽  
Ron Morse

“Float-bed” (FB) is a simple hydroponic system used by the tobacco industry for transplant production. “Ebb-and-flood” (EF) is a modified FB system with periodic draining of the bed to limit water availability and control plant growth. Field-bed cabbage (Brassica oleracea L. gp. Capitata) transplant production was compared with FB, EF, and overhead-irrigated plug-tray greenhouse systems. Plants were produced in May and June and transplanted in a field near Blacksburg, Va., in June and July of 1994 and 1995, respectively. Beds for FB and EF production consisted of galvanized metal troughs (3.3 × 0.8 × 0.3 m) lined with a double layer of 0.075-mm-thick black plastic film. In 1994, both EF and FB seedlings were not hardened before transplanting, were severely stressed after transplanting, and had higher seedling mortality compared with plants from other systems. Plug-tray transplants showed the greatest increase in leaf area following transplanting and matured earlier than seedlings produced in other systems. In 1995, EF- and FB-grown cabbage plants were hardened by withholding water before transplanting, and seedlings had greater fresh mass and leaf area than plug-tray or field-bed seedlings 3.5 weeks after transplanting. Less succulent cabbage transplants were grown in EF and FB systems containing 66 mg·L-1 N (40% by nitrate) and 83 mg·L-1 K. Compared with the FB system, the EF system allowed control of water availability, which slowed plant growth, and increased oxygen concentration in the root zone. Both EF and FB systems are suitable for cabbage transplant production.


2020 ◽  
Vol 10 (4) ◽  
pp. 1-5
Author(s):  
M. Sakaki ◽  
A. Shahnazari ◽  
M. A. Gholami

Water crisis: One of the most important and effective solutions to cope with water crisis is optimum use of consuming water in agriculture section. In other word, increasing “agricultural water productivity” is unavoidable in future planning and decision making as an effective factor. Therefore, deficit irrigation is stated as a proper solution in water limitation aiming to maximally use water volume unit. In addition to applying irrigation management methods, using developed techniques to save soil moisture is of the effective measures to increase irrigation efficiency and achieving sustainable agriculture. One of the strategies for optimal use of water resources and its preservation is using super absorbent polymers. This study was conducted during two growth seasons and within 2014-2015 in the farm and in Sari University of agricultural sciences and natural resources on single cross 704silage maize. The treatments included three irrigation regimes (as the main plot) and three levels of super absorbent (as subplots) with three replications. Irrigation treatments included complete and partial root irrigation in two levels of 55 and 65% (PRD65, PRD55) and three levels of water super absorbent polymer of A200 type, including 20, 40 and 60kg/hectare. Based on the obtained results, the plants, were regularly irrigated during their growth period and cultivated in the conditions of 60kg/hectare of super absorbent, had the most rate of yield components but they weren’t significantly different from those plants, irrigated with 55 and 65% volume. In other word, the function of super absorbent in these treatments increased the efficiency of water use and partial irrigation in 55 and 65% volume has been able to generate an equal yield with the conditions of complete irrigation.


2002 ◽  
Vol 127 (1) ◽  
pp. 127-135 ◽  
Author(s):  
Juan C. Díaz-Pérez ◽  
K. Dean Batal

Soil warming is one of the benefits associated with use of plastic film mulches. However, under high temperature conditions during the summer, especially in the southeastern United States, some mulches warm the soil to temperatures that might be deleterious to plant growth. Tomato (Lycopersicon esculentum Mill.) plants grown in the field were exposed to a range of root-zone temperatures (RZTs), resulting from growing the plants in different seasons and by using colored mulches that differed in their soil-warming ability. The objective was to determine the relationship of mean seasonal RZT, as affected by different colored plastic film mulches, with plant growth and fruit yield. The study consisted of experiments carried out in three seasons: Fall 1999 (five mulches, one cultivar), Spring 2000 (eight mulches and three cultivars), and Fall 2000 (four mulches and three cultivars). Treatments were black (n = 2), gray, red, silver (n = 3), and white (n = 2) mulches, and bare soil. Over the season, mean RZT decreased in the fall (from 32 to 24 °C) and increased in the spring (from 20 to 29 °C). Daily mean values of RZT over the season under plastic mulches were higher (1 to 5 °C) than those of air temperature. The highest RZT at midday occurred under black mulch, and the lowest under bare soil and white mulch. Bare soil showed the largest diurnal RZT fluctuation. RZT at midday was up to 4 °C higher under black or gray mulch compared to the other mulches or bare soil. The degree of soil warming was correlated with reflectivity of the mulch. Black mulch had the lowest light reflectance [10% photosynthetically active radiation (PAR)] while silver mulch had the highest (55% PAR). There were, however, differences in reflectance among mulches of the same color depending on the manufacturer. RZT affected vegetative top fresh weight (FW), fruit yield, fruit number, and individual fruit FW. All these growth attributes fitted a quadratic relationship with mean RZT for the season, with an optimal that ranged between 25.4 and 26.3 °C. The effects of colored mulches on plant response depended on the impact of the mulch on RZT. Plant growth and yield were highest as RZT approached the optimal RZT for the plants.


HortScience ◽  
2019 ◽  
Vol 54 (1) ◽  
pp. 110-116 ◽  
Author(s):  
Stephen S. Deschamps ◽  
Shinsuke Agehara

Black plastic mulch is used predominantly for winter strawberry (Fragaria ×ananassa Duch.) production in Florida because of its warming effects. However, black plastic mulch can increase heat stress during establishment, especially when growers advance planting dates (e.g., late September) to improve earliness. Consequently, we designed a new plastic mulch film that has a metalized center stripe with black shoulders. We hypothesized that metalized-striped mulch can minimize heat stress during establishment, while maintaining the warming effects of black mulch during winter. We conducted field trials over two seasons to evaluate black mulch, fully metalized mulch, and metalized-striped mulch using two cultivars differing in heat stress tolerance and fruit production patterns: ‘Florida Radiance’ and ‘Florida Beauty’. The effect of plastic mulch type on plant growth and yield was generally consistent across both seasons. Compared with black mulch, metalized-striped mulch reduced afternoon root-zone temperature (RZT) by up to 3.1 °C and reduced the duration of heat stress conditions (RZT > 30 °C) by 119 hours across October and November, but exhibited equivalent soil warming during winter. Yield increases by metalized-striped mulch compared with black mulch ranged from 19% to 34% in the early season (November–January), 6% to 20% in the late season (February–March), and 12% to 26% over the entire season. Statistical significance was detected for the 2016–17 early-season yield and when yield data were expressed on a weekly basis. Compared with black mulch, metalized-striped mulch improved fruit number significantly without affecting fruit weight or canopy area, suggesting that heat stress on black mulch negatively affects flower and fruit development more than plant growth. Weekly fruit yield data indicate that metalized-striped mulch can produce greater yields than fully metalized mulch. Metalized-striped mulch is an easily implementable strategy for reducing establishment heat stress and improving fruit earliness in subtropical winter strawberry production regions.


HortScience ◽  
2006 ◽  
Vol 41 (4) ◽  
pp. 1005E-1006
Author(s):  
Juan C. Diaz-Perez ◽  
Ron Gitaitis ◽  
Bikash Mandal

Tomato spotted wilt (TSW) is a serious constraint to tomato production in various regions of the world. The effect of TSW on tomato yield is largely influenced by time of infection. Early infection usually results in severe stunting of the seedling and even death of the plant. Plastic mulches have been found to affect both the incidence of TSW, and plant growth and yield of tomato. The objective of this study was to determine the effect of root zone temperature (RZT) as affected by plastic mulch on the timing of appearance of first TSW symptoms, vegetative top fresh weight (FW) and fruit FW in tomato. Under natural TSW infection as well as in artificially inoculated plants, vegetative top FW and fruit FW were both linearly related with number of days after transplanting (DAT) the plants were free from TSW symptoms. The plants grown on black mulch during the fall showed earlier appearance of TSW symptoms, and had significantly reduced vegetative growth and fruit yields. The mean RZT during the first 42 DAT—the time before the plants reached full canopy closure—significantly affected the timing of first appearance of TSW symptoms, tomato plant growth and fruit yield. Vegetative top FW (optimal RZT = 24.1 °C) and fruit FW (26.9 °C) fitted the quadratic relationships with the mean RZT during the first 42 DAT. In conclusion, utilization of plastic mulches that created conditions of RZT stress, particularly heat stress, resulted in reduced plant growth and yield and may predispose the plants to earlier expression of TSW symptoms compared to plants grown under RZTs more favorable to tomato plant growth.


EDIS ◽  
2013 ◽  
Vol 2013 (11) ◽  
Author(s):  
George Hochmuth ◽  
Laurie Trenholm ◽  
Don Rainey ◽  
Esen Momol ◽  
Claire Lewis ◽  
...  

Proper irrigation management is critical to conserve and protect water resources and to properly manage nutrients in the home landscape. How lawns and landscapes are irrigated directly impacts the natural environment, so landscape maintenance professionals and homeowners must adopt environmentally-friendly approaches to irrigation management. After selecting the right plant for the right place, water is the next critical factor to establish and maintain a healthy lawn and landscape. Fertilization is another important component of lawn and landscape maintenance, and irrigation must be applied correctly, especially following fertilization, to minimize potential nutrient losses. This publication supplements other UF/IFAS Extension publications that also include information on the role of soil and the root zone in irrigation management. This publication is designed to help UF/IFAS Extension county agents prepare materials to directly address nutrient losses from lawns and landscapes caused by inadequate irrigation management practices. This 6-page fact sheet was written by George Hochmuth, Laurie Trenholm, Don Rainey, Esen Momol, Claire Lewis, and Brian Niemann, and published by the UF Department of Soil and Water Science, October 2013. http://edis.ifas.ufl.edu/ss586


Sign in / Sign up

Export Citation Format

Share Document