scholarly journals Quantitative Response of Soybean Development and Yield to Drought Stress during Different Growth Stages in the Huaibei Plain, China

Agronomy ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 97 ◽  
Author(s):  
Yanqi Wei ◽  
Juliang Jin ◽  
Shangming Jiang ◽  
Shaowei Ning ◽  
Li Liu
Water ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 1971
Author(s):  
Xingyang Song ◽  
Guangsheng Zhou ◽  
Qijin He ◽  
Huailin Zhou

Drought stress has adverse effects on crop growth and yield, and its identification and monitoring play vital roles in precision crop water management. Accurately evaluating the effect of drought stress on crop photosynthetic capacity can provide a basis for decisions related to crop drought stress identification and monitoring as well as drought stress resistance and avoidance. In this study, the effects of different degrees of persistent drought in different growth stages (3rd leaf stage, 7th leaf stage and jointing stage) on the maximum carboxylation rate at a reference temperature of 25 °C (Vcmax25) of the first fully expanded leaf and its relationship to the leaf water content (LWC) were studied in a field experiment from 2013 to 2015. The results indicated that the LWC decreased continuously as drought stress continued and that the LWC decreased faster in the treatment with more irrigation. Vcmax25 showed a decreasing trend as the drought progressed but had no clear relationship to the growth stage in which the persistent drought occurred. Vcmax25 showed a significantly parabolic relationship (R2 = 0.701, p < 0.001) with the LWC, but the different degrees of persistent drought stress occurring in different growth stages had no distinct effect on the LWC values when Vcmax25 reached its maximum value or zero. The findings of this study also suggested that the LWC was 82.5 ± 0.5% when Vcmax25 reached its maximum value (42.6 ± 3.6 μmol m−2 s−1) and 67.6 ± 1.2% (extreme drought) when Vcmax25 reached zero. These findings will help to improve crop drought management and will be an important reference for crop drought identification, classification and monitoring as well as for the development of drought monitoring and early warning systems for other crops or maize varieties.


2014 ◽  
Vol 61 (4) ◽  
pp. 493-506 ◽  
Author(s):  
Maryam Goodarzian Ghahfarokhi ◽  
Syrus Mansurifar ◽  
Ruhollah Taghizadeh-Mehrjardi ◽  
Mohsen Saeidi ◽  
Amir Mohammad Jamshidi ◽  
...  

2018 ◽  
Vol 44 (1) ◽  
pp. 126 ◽  
Author(s):  
Hai-Yan ZHANG ◽  
Wen-Xue DUAN ◽  
Bei-Tao XIE ◽  
Shun-Xu DONG ◽  
Bao-Qing WANG ◽  
...  

Author(s):  
Nishi Mishra ◽  
M.K. Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi ◽  
Neha Gupta ◽  
...  

Background: Soybean is a key crop that grants an imperative supply of oils and proteins to humans and animals; however, its productivity spectacularly diminished owing to the occurrence of drought stress. Methods: The present investigation was executed during Kharif 2018-2019 to recognize drought tolerant genotypes on the basis of an array of morpho-physiological traits. Morpho-physiological analysis among 53 genotypes divulged the existence of drought tolerance capability in studied genotypes.Result: On the basis of current findings, it can be concluded that drought stress retards the growth and metabolic activity of soybean genotypes. These parameters showed considerable amount of variability under drought stress at different growth stages in soybean. Among 53 soybean genotypes, four genotypes viz., JS97-52, AMS 2014-1, RVS-14 and NRC-147 was found to be drought tolerant.


2013 ◽  
Vol 129 ◽  
pp. 152-162 ◽  
Author(s):  
Jinliang Chen ◽  
Shaozhong Kang ◽  
Taisheng Du ◽  
Rangjian Qiu ◽  
Ping Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document