scholarly journals Effect of Biochar Particle Size on Physical, Hydrological and Chemical Properties of Loamy and Sandy Tropical Soils

Agronomy ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 165 ◽  
Author(s):  
Sara de Jesus Duarte ◽  
Bruno Glaser ◽  
Carlos Pellegrino Cerri

The application of biochar is promising for improving the physical, chemical and hydrological properties of soil. However, there are few studies regarding the influence of biochar particle size. This study was conducted to evaluate the effect of biochar size on the physical, chemical and hydrological properties in sandy and loamy tropical soils. For this purpose, an incubation experiment was conducted in the laboratory with eight treatments (control (only soil), two soils (loamy and sandy soil), and three biochar sizes (<0.15 mm; 0.15–2 mm and >2 mm)). Analyses of water content, bulk density, total porosity, pore size distribution, total carbon (TC) and total N (TN) were performed after 1 year of soil–biochar-interactions in the laboratory. The smaller particle size <0.15 mm increased water retention in both soils, particularly in the loamy soil. Bulk density slightly decreased, especially in the loamy soil when biochar > 2 mm and in the sandy soil with the addition of 0.15–2 mm biochar. Porosity increased in both soils with the addition of biochar in the range of 0.15–2 mm. Smaller biochar particles shifted pore size distribution to increased macro and mesoporosity in both soils. Total carbon content increased mainly in sandy soil compared to control treatment; the highest carbon amount was obtained in the biochar size 0.15–2 mm in loamy soil and <0.15 mm in sandy soil, while the TN content and C:N ratio increased slightly with a reduction of the biochar particle size in both soils. These results demonstrate that biochar particle size is crucial for water retention, water availability, pore size distribution, and C sequestration.

Respuestas ◽  
2020 ◽  
Vol 25 (1) ◽  
pp. 33-43
Author(s):  
María Camila Olarte ◽  
Juan Carlos Ruge

In highly porous soils with a susceptibility to collapse, there are points of volumetric variability, due to the present heterogeneity, regarding the diameters of the poral throat. The predominance of a pore size is closely related to certain values of the Water Retention Curve (WRC). However, to date, a possible correlation with particle size distribution (PaSD), obtained using modern, highly reliable gravitational sedimentation methods, has not been studied. The porous clay of lateritic origin under study, was characterized by means of index tests, to know its basic geotechnical behavior. Subsequently, it was analyzed by mercury intrusion porosimetry tests, to estimate the Pore Size Distribution (PSD); filter paper and pressure plate method to obtain the water retention curve; as well as the method of integral measurement of the pressure in the suspension (ISP), to obtain the fine grain size of the material. This article tries to present a proposal of relationship between these parameters, with the aim of improving the understanding in the characterization of this type of materials. The results showed that there is indeed a strong relationship between the particle size distributions, pore size distribution and the water retention curve. Mainly, this is reflected in the geometric places corresponding to the air value entries (AEV) of macropores and micropores. Which coincide with essential parameters of the behavior of the other curves (PaSD and PSD).


2021 ◽  
Author(s):  
Łukasz Gluba ◽  
Anna Rafalska-Przysucha ◽  
Kamil Szewczak ◽  
Mateusz Łukowski ◽  
Radosław Szlązak ◽  
...  

&lt;p&gt;Biochar application has been reported for improving the physical, chemical, and hydrological properties of soil. However, biochar can be produced from different feedstocks and at different conditions having a direct impact on its properties. Furthermore, the overall effect of improvement depends on the type of soil. That makes biochar amendment difficult to optimize and creates the need for extensive studies of this issue for its better understanding. In these studies, we show that water holding capacity (by means of Available Water Content - AWC) can be significantly improved in arable sandy soil using fine-sized biochar particles.&lt;/p&gt;&lt;p&gt;For our studies, we have used sunflower husk biochar (pyrolyzed at 650&lt;sup&gt;o&lt;/sup&gt;C). Biochar samples were characterized using an elemental analyzer for C, H, N content studies, mercury porosimeter for porosity and specific pore volumes, and vibratory shaker with a stack of sieves for particle size distribution. The examined biochar was sieved in order to obtain four diameter size fractions: &lt;50 &amp;#181;m, 50&amp;#8211;100 &amp;#181;m, 100&amp;#8211;250 &amp;#181;m and &lt;2000 &amp;#181;m and mixed with arable sandy soil for 0.95, 2.24, 4.76 and 9.52 wt.%. The unamended soil sample served as a reference. At first, we have measured the bulk density of the air-dried samples. After then the pressure plate method was used to determine the water retention curves. The results were fitted using the van Genuchten equation. Finally, the AWC for all the measured samples was calculated from a difference between soil water contents for pF=2.2 and pF=4.2.&amp;#160; &lt;/p&gt;&lt;p&gt;The bulk density studies have shown a nonlinear behavior as a function of dose for all fractions of the biochar. The clearest effect is observed for fractions below 100 &amp;#181;m for which the density vs dose characteristics of the samples revealed a maximum for 0.95 wt.% and a decreasing trend for higher biochar contents. The AWC studies shown that the particle size fractions of biochar below 100 &amp;#181;m in diameter cause also the most significant improvement in the water retention, almost doubling the reference level (0.078 m&lt;sup&gt;3 &lt;/sup&gt;m&lt;sup&gt;-3&lt;/sup&gt;) to approximately 0.155 m&lt;sup&gt;3 &lt;/sup&gt;m&lt;sup&gt;-3&lt;/sup&gt; after biochar amendment. The results are explained by the filling of the free volume in the sandy soil matrix by small biochar particles. That leads to a shift of the pore size distribution to smaller radiuses, which in consequence promotes an increase in AWC.&amp;#160;&lt;/p&gt;&lt;p&gt;&amp;#160;&lt;/p&gt;&lt;p&gt;The research was conducted under the project&amp;#160; &quot;Water in soil&amp;#160; -&amp;#160; satellite monitoring and improving the retention using biochar&quot; No. BIOSTRATEG3/345940/7/NCBR/2017 which was financed by the Polish National Centre for Research and Development in the framework of &amp;#8220;Environment, agriculture and forestry&quot; -BIOSTRATEG strategic R&amp;D programme.&lt;/p&gt;


Author(s):  
Gabriele Della Vecchia ◽  
Anne-Catherine Dieudonné ◽  
Cristina Jommi ◽  
Robert Charlier

2013 ◽  
Vol 50 (4) ◽  
pp. 435-450 ◽  
Author(s):  
Christopher T.S. Beckett ◽  
Charles E. Augarde

Several models have been suggested to link a soil's pore-size distribution to its retention properties. This paper presents a method that builds on previous techniques by incorporating porosity and particles of different sizes, shapes, and separation distances to predict soil water retention properties. Mechanisms are suggested for the determination of both the main drying and wetting paths, which incorporate an adsorbed water phase and retention hysteresis. Predicted results are then compared with measured retention data to validate the model and to provide a foundation for discussing the validity and limitations of using pore-size distributions to predict retention properties.


Fractals ◽  
2014 ◽  
Vol 22 (03) ◽  
pp. 1440009 ◽  
Author(s):  
MIGUEL ANGEL MARTÍN ◽  
FRANCISCO J. MUÑOZ ◽  
MIGUEL REYES ◽  
F. JAVIER TAGUAS

A 2D computer simulation method of random packings is applied to sets of particles generated by a self-similar uniparametric model for particle size distributions (PSDs) in granular media. The parameter p which controls the model is the proportion of mass of particles corresponding to the left half of the normalized size interval [0,1]. First the influence on the total porosity of the parameter p is analyzed and interpreted. It is shown that such parameter, and the fractal exponent of the associated power scaling, are efficient packing parameters, but this last one is not in the way predicted in a former published work addressing an analogous research in artificial granular materials. The total porosity reaches the minimum value for p = 0.6. Limited information on the pore size distribution is obtained from the packing simulations and by means of morphological analysis methods. Results show that the range of pore sizes increases for decreasing values of p showing also different shape in the volume pore size distribution. Further research including simulations with a greater number of particles and image resolution are required to obtain finer results on the hierarchical structure of pore space.


2019 ◽  
Vol 18 (1) ◽  
pp. 0 ◽  
Author(s):  
Mehdi Rahmati ◽  
Andreas Pohlmeier ◽  
Sara Mola Ali Abasiyan ◽  
Lutz Weihermüller ◽  
Harry Vereecken

Forests ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1113
Author(s):  
Stefan Julich ◽  
Janis Kreiselmeier ◽  
Simon Scheibler ◽  
Rainer Petzold ◽  
Kai Schwärzel ◽  
...  

Tree species, e.g., shallow vs. deep rooting tree species, have a distinct impact on hydrological properties and pore size distribution of soils. In our study, we determined the soil hydrologic properties and pore size distribution at three forest stands and one pasture as reference on soils with stagnant water conditions. All sites are located in the Wermsdorf Forest, where historical studies have demonstrated severe silvicultural problems associated with stagnant water in the soil. The studied stands represent different stages of forest management with a young 25-year-old oak (Sessile Oak (Quercus petraea) and Red oak (Q. robur)) plantation, a 170-year-old oak stand and a 95-year-old Norway Spruce (Picea abies) stand in second rotation. We determined the infiltration rates under saturated and near-saturated conditions with a hood-infiltrometer at the topsoil as well as the saturated hydraulic conductivity and water retention characteristic from undisturbed soil samples taken from the surface and 30 cm depth. We used the bi-modal Kosugi function to calculate the water retention characteristic and applied the normalized Young-Laplace equation to determine the pore size distribution of the soil samples. Our results show that the soils of the old stands have higher amounts of transmission pores, which lead to higher infiltration rates and conductance of water into the subsoil. Moreover, the air capacity under the old oak was highest at the surface and at 30 cm depth. There was also an observable difference between the spruce and oak regarding their contrasting root system architecture. Under the oak, higher hydraulic conductivities and air capacities were observed, which may indicate a higher and wider connected macropore system. Our results confirm other findings that higher infiltration rates due to higher abundance of macropores can be found in older forest stands. Our results also demonstrate that an adapted forest management is important, especially at sites affected by stagnant water conditions. However, more measurements are needed to expand the existing data base of soil hydraulic properties of forest soils in temperate climates.


2022 ◽  
Vol 215 ◽  
pp. 105215
Author(s):  
Renato P. de Lima ◽  
Mário M. Rolim ◽  
Matheus P.S. Toledo ◽  
Cassio A. Tormena ◽  
Anderson R. da Silva ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document