scholarly journals Structure and Genetic Diversity of Nine Important Landraces of Capsicum Species Cultivated in the Yucatan Peninsula, Mexico

Agronomy ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 376 ◽  
Author(s):  
Lucero del C. López Castilla ◽  
René Garruña Hernández ◽  
Crescencio de la Cruz Castillo Aguilar ◽  
Aida Martínez-Hernández ◽  
Matilde Margarita Ortiz-García ◽  
...  

Mexico has a wealth of Capsicum species, which has led to the development of a large number of chili pepper landraces. A great wealth of Capsicum germplasm can be found in southern Mexico in the Yucatan Peninsula, an important area of diversification of Capsicum annuum. Specifically, in the western Yucatan Peninsula, three of the five domesticated species of Capsicum (C. annuum, C. chinense and C. frutescens) have been reported. However, information on their genetic diversity, conservation status and potential use is lacking. To generate useful information toward the sustainable use, management and conservation of these species, we evaluated the structure, diversity and genetic relationships of nine accessions of Capsicum spp., of major importance cultivated in the western Yucatan Peninsula using 42 ISSR loci. The results indicated that these accessions consisted of three genetic groups that were defined by the respective species of each accession. The level of genetic diversity was moderate and distributed mainly among accessions. The ISSR markers detected a high level of polymorphism and allowed the genetic differentiation of the C. annuum complex. The results indicated that the accessions collected in the western Yucatan Peninsula constitute a valuable genetic resource that can be used in genetic improvement and conservation programs.

2021 ◽  
pp. 1-8
Author(s):  
C. C. Castillo-Aguilar ◽  
L. C. López Castilla ◽  
N. Pacheco ◽  
J. C. Cuevas-Bernardino ◽  
R. Garruña ◽  
...  

Abstract Mexico has a wealth of plant genetic resources, including Capsicum species. In southern Mexico, specifically in the western part of the Yucatan Peninsula, Maya farmers have preserved a great diversity of chilli pepper landraces of C. annuum, C. frutescens and C. chinense. However, the morphological diversity, capsaicinoid content, conservation status and potential use of these species have not been studied. To fill this gap and generate information to support the conservation and use of these species, we characterized the phenotypic diversity and capsaicinoid content for nine chilli pepper landraces from the western Yucatan Peninsula by assessing 15 quantitative and 39 qualitative traits for 10 plants of each landrace. For quantitative variables, two groups of chilli pepper landraces were obtained by principal component analysis and cluster analysis. Group I was formed by Rosita, Bobo, Dulce, Xcat'ik1, Xcat'ik2 and Verde landraces; Group II included the Maax, Bolita and Pico Paloma landraces. For qualitative variables, three groups of chilli pepper landraces were obtained; Group I included Dulce, Bobo, Xcat'ik1, Xcat'ik2 and Verde landraces, Group II only included the Rosita landrace, and Group III included Maax, Bolita and Pico Paloma landraces. Ultra-performance liquid chromatography–photodiode array (UPLC-PDA) quantification of capsaicinoids indicated higher values in landraces Rosita (14,062.3 μg/g D.W), Bolita (5928.1 μg/g D.W), Maax (3438.4 μg/g D.W) and Pico Paloma (3138.9 μg/g D.W). The Yucatan chilli pepper landraces provide valuable diverse germplasm for morphological characteristics and capsaicinoid content that can be used in breeding and conservation programmes.


2020 ◽  
Vol 18 (4) ◽  
pp. 201-210
Author(s):  
L. F. C. dos Santos ◽  
M. M. Ferrer ◽  
M. R. Ruenes-Morales ◽  
P. I. Montañez-Escalante ◽  
R. H. Andueza-Noh ◽  
...  

AbstractCowpea (Vigna unguiculata L. Walp.) is an important grain legume in tropical and subtropical regions. It requires low resource inputs and has a high nutritional value. Therefore, cowpea can play an important role in the development of agriculture. In southern Mexico, Mayan farmers have conserved and developed cowpea landraces for centuries. Nevertheless, information on their genetic diversity, conservation status and potential use is minimal. To generate information toward sustainable use, management and conservation of this species, we evaluated the genetic diversity and structure of 20 cowpea landraces from southeast Mexico using 10 inter-simple sequence repeat (ISSR) molecular markers. These ISSR markers generated 68 loci with a 67.7% polymorphism rate and average polymorphic information content of 0.36. The results of Bayesian assignation and the UPGMA analysis suggest the formation of two main groups defined by their genetic origin in southeast Mexico. High levels of genetic structure were found with a moderate level of genetic diversity distributed mainly between landraces. Low levels of intra-landrace variability were observed. Two landraces (P5 and P12) from Calakmul resulted in the high levels of genetic diversity. The selected markers were efficient at assessing genetic variability among Mexican cowpea landraces, providing valuable information that can be used in local conservation and participatory breeding programmes.


Genetika ◽  
2021 ◽  
Vol 53 (2) ◽  
pp. 671-686
Author(s):  
Mojdeh Mahdavi ◽  
Fariba Sharifnia ◽  
Fahimeh Salimpour ◽  
Akbar Esmaeili ◽  
Mohaddeseh Larypoor

Iran has a rich pistachio germplasm, thereby, the diversity and number of Iranian pistachio cultivars is unique in the world. Genetic diversity is crucial for sustainable use of genetic resources and conservation. As one of the oldest nut crops in human history, pistachio nuts have a high nutritional value and are commercially important. In the present study, the genetic variation of pistachio genotypes was investigated by nuclear ISSR markers. In this study, genetic relationships among 11 cultivars was assessed by using 12 inter simple sequence repeat (ISSR) primers. The total of 53 bands of which 44 (83%) were polymorphic were amplified by the 12 primers, an average of 4.4 bands per primer. The total number of amplified fragments was between 2 to 6 and the number of polymorphic fragments ranged from two to six. The amplified allele sizes ranged from 300 to 1600 bp. Pair-wise genetic similarity coefficients varied from 0.70 to 0.95. The UPGMA dendrogram differentiated the genotypes into two major clusters. The Mantel test showed correlation between genetic and geographical distance. AMOVA revealed a significant genetic difference among cultivars and showed that 35% of total genetic variation was due to within- cultivars diversity. The present results may be used for the conservation, core collection and future breeding of the pistachio.


2013 ◽  
Vol 23 (6) ◽  
pp. 939-951 ◽  
Author(s):  
Nancy F. Mercado-Salas ◽  
Benjamín Morales-Vela ◽  
Eduardo Suárez-Morales ◽  
Thomas M. Iliffe

2020 ◽  
Vol 24 (5) ◽  
pp. 474-480
Author(s):  
I. I. Suprun ◽  
S. A. Plugatar ◽  
I. V. Stepanov ◽  
T. S. Naumenko

In connection with the development of breeding and the creation of new plant varieties, the problem of their genotyping and identification is becoming increasingly important, therefore the use of molecular methods to identify genetic originality and assess plant genetic diversity appears to be relevant. As part of the work performed, informative ISSR and IRAP DNA markers promising for the study of genetic diversity of the Rosa L. genus were sought and applied to analysis of genetic relationships among 26 accessions of the genus Rosa L. from the gene pool collection of Nikita Botanical Gardens. They included 18 cultivated varieties and 8 accessions of wild species. The species sample included representatives of two subgenera, Rosa and Platyrhodon. The subgenus Platyrhodon was represented by one accession of the species R. roxburghii Tratt. Cultivated roses were represented by varieties of garden groups hybrid tea, floribunda, and grandiflora. The tested markers included 32 ISSRs and 13 IRAPs. Five ISSR markers (UBC 824, ASSR29, 3A21, UBC 864, and UBC 843) and three IRAPs (TDK 2R, Сass1, and Сass2) were chosen as the most promising. They were used for genotyping the studied sample of genotypes. In general, they appeared to be suitable for further use in studying the genetic diversity of the genus Rosa L. The numbers of polymorphic fragments ranged from 12 to 31, averaging 19.25 fragments per marker. For markers UBC 864 and UBC 843, unique fingerprints were identified in each accession studied. The genetic relationships of the studied species and varieties of roses analyzed by the UPGMA, PCoA, and Bayesian methods performed on the basis of IRAP and ISSR genotyping are consistent with their taxonomic positions. The genotype of the species R. roxburghii of the subgenus Platyrhodon was determined genetically as the most distant. According to clustering methods, the representative of the species R. bengalensis did not stand out from the group of cultivated varieties. When assessing the level of genetic similarity among the cultivated varieties of garden roses, the most genetically isolated varieties were ‘Flamingo’, ‘Queen Elizabeth’, and ‘Kordes Sondermeldung’; for most of the other varieties, groups of the greatest genetic similarity were identified. This assessment reflects general trends in phylogenetic relationships, both among the studied species of the genus and among cultivated varieties.


2013 ◽  
Vol 59 (1) ◽  
pp. 125-134 ◽  
Author(s):  
Carmen Scherbaum ◽  
Alejandro Estrada

Abstract The spider monkey, a fruit specialist and important seed dispersal agent in the Neotropics, is an endangered primate due to habitat loss, hunting and the pet trade. Spider monkeys have been the subject of a few studies in Central and South America, but little is known about the diet and ranging for this primate in southern Mexico. Here we report the results of a six-month long study (October 2010 to March 2011) of the feeding preferences and ranging patterns of the Yucatan spider monkey Ateles geoffroyi yucatanensis living in the “Ya´ax´che” reserve by the Caribbean coast in northeast Yucatan peninsula. Focal animal and scan sampling as well as GPS tracking were used to document spider monkey feeding behavior, location of food trees and ranging in the reserve. The spider monkeys used 36 species of plants (94% trees; n = 432) and six non tree morphospecies as a source of food. Six tree species accounted for ≥80% of total feeding time and for 74% of all trees used. Fruits accounted for 59% of total feeding time, followed by leaves (35%), palm piths (5%) and other plant parts (1%). Total range used by the monkeys was estimated at 43% of semievergreen rainforest habitat available (ca 40ha). Range use was not random with segments showing light, moderate and heavy use; the use of different areas of their range varied monthly and was closely linked to the spatial dispersion of the trees used for food.


2018 ◽  
Vol 10 (4) ◽  
pp. 554-558
Author(s):  
Emre SEVİNDİK ◽  
Hüseyin UYSAL ◽  
Zehra Tuğba MURATHAN

Within the present study, it was conducted a genetic diversity analysis using ISSR markers for some apple genotypes grown in Ardahan region, Turkey. Total genomic DNA (gDNA) isolation from apple leaves was performed using commercial kits. Five ISSR primers were used to determine the genetic diversity among the genotypes studied. Polymerase Chain Reaction (PCR) was performed with all gDNA samples to produce bands to score. PCR products were run in agarose gel and visualized under UV light. Bands on the gels were scored as “1”, while no bands at the corresponding positions were scored as “0”, to generate the matrix file. Five ISSR primers produced a total of 35 bands, and 20 of them were polymorphic. The polymorphic bands rated approximately 57%. Phylogenetic relationships and genetic distances between the genotypes were calculated by using the PAUP [Phylogenetic Analysis Using Parsimony (and Other Methods)] program.  According to the PAUP data, the closest genetic distance was 0.03704 between ‘Kaburga’ and ‘Japon Apple’ genotypes, while the furthest genetic distance was 0.48148 between ‘Karanfil Apple’ and ‘Sisli Uruset’. The phylogenetic analysis obtained using UPGMA algorithm produced a phylogenetic tree with two clades. The results suggest that ISSR markers are useful tools for determining genetic relationships among apple genotypes.


2014 ◽  
Vol 55 ◽  
pp. 184-189 ◽  
Author(s):  
Lihua Zhao ◽  
Huamin Liu ◽  
Guangze Cai ◽  
Mingzhong Xia

Weed Science ◽  
2012 ◽  
Vol 60 (4) ◽  
pp. 552-557 ◽  
Author(s):  
Jing Yang ◽  
Ling Tang ◽  
Ya-Li Guan ◽  
Wei-Bang Sun

Mexican sunflower is a native species of North and Central America that was introduced into China early last century, but it has widely naturalized and become a harmful invasive plant in tropical and subtropical regions in South China. Inter-simple sequence repeat (ISSR) markers were employed to assess genetic diversity and variation in Mexican sunflower populations from China and neighboring regions. The karyotypes of populations were also studied. Our research showed high levels of genetic diversity in all populations. The lowest genetic diversity estimates were represented in two populations in Laos, suggesting prevention of new introductions into Laos is critical. Partitioning of genetic variance revealed that genetic variation was mostly found within populations, and unweighted pair group method with arithmetic means (UPGMA) analysis showed that the introductions into China and Laos were independent. There were no obvious correlations between genetic relationships and geographic distance of populations in China, consistent with the human associated dispersal history of Mexican sunflower. Previous cytological data and our chromosome count (2n = 34) and karyotype analysis showed chromosome stability among populations. The high levels of genetic diversity within invasive Mexican sunflower populations could be challenging for its management in China, and further expansion and potential negative effects on ecological systems of this plant should be monitored.


2015 ◽  
Vol 71 (1) ◽  
pp. 81-95 ◽  
Author(s):  
Hoda Moradkhani ◽  
Ali Ashraf Mehrabi ◽  
Alireza Etminan ◽  
Alireza Pour-Aboughadareh

AbstractThe aim of this study is investigation the applicability of SSR and ISSR markers in evaluating the genetic relationships in twenty accessions ofAegilopsandTriticumspecies with D genome in different ploidy levels. Totally, 119 bands and 46 alleles were detected using ten primers for ISSR and SSR markers, respectively. Polymorphism Information Content values for all primers ranged from 0.345 to 0.375 with an average of 0.367 for SSR, and varied from 0.29 to 0.44 with the average 0.37 for ISSR marker. Analysis of molecular variance (AMOVA) revealed that 81% (ISSR) and 84% (SSR) of variability was partitioned among individuals within populations. Comparing the genetic diversity ofAegilopsandTriticumaccessions, based on genetic parameters, shows that genetic variation ofAe. crassaandAe. tauschiispecies are higher than other species, especially in terms of Nei’s gene diversity. Cluster analysis, based on both markers, separated total accessions in three groups. However, classification based on SSR marker data was not conformed to classification according to ISSR marker data. Principal co-ordinate analysis (PCoA) for SSR and ISSR data showed that, the first two components clarified 53.48% and 49.91% of the total variation, respectively. This analysis (PCoA), also, indicated consistent patterns of genetic relationships for ISSR data sets, however, the grouping of accessions was not completely accorded to their own geographical origins. Consequently, a high level of genetic diversity was revealed from the accessions sampled from different eco-geographical regions of Iran.


Sign in / Sign up

Export Citation Format

Share Document