scholarly journals Somatic Embryogenesis and Plant Regeneration from Cotyledon and Hypocotyl Explants of Fagopyrum esculentum Moench lpls Mutant

Agronomy ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 768
Author(s):  
Yue Fei ◽  
Lan-Xiang Wang ◽  
Zheng-Wu Fang ◽  
Zhi-Xiong Liu

Buckwheat (Fagopyrum esculentum, Family Polygonaceae) is an annual pseudo-cereal crop with healing benefits. However, the genetic improvement of common buckwheat has achieved only limited success, mainly due to buckwheat’s dimorphic flowers and heteromorphic self-incompatibility. Here, we develop a useful protocol for indirect somatic embryogenesis and subsequent plant regeneration from hypocotyl explants of F. esculentum. Firstly, the initial calli of hypocotyl explants were induced on Murashige and Skoog (MS) basal medium containing 2.0 mgL−1 2,4-D and 1.5 mgL−1 6-BA for 30 days culture, and then the yellowish white friable embryogenic calli were developed when the initial calli were transferred to fresh MS basal medium supplemented with 1.0 mgL−1 6-BA and 0.5 mgL−1 thidiazuron (TDZ)two to three times subculture at 40–60 days intervals. Subsequently, the somatic embryos were able to germinate from embryogenic callus sub-cultured on MS basal medium containing 1.0 mgL−1 6-BA and 0.5 mgL−1 TDZ with 15% potato puree for 20 days subculture. Finally, maximum mean percentage (75.75%) of somatic embryo-derived plants were obtained when the mature somatic embryos were transferred to MS basal medium without growth regulators for 40 days culture. Our result provides a useful protocol for plant regeneration and SE from hypocotyl explants of F. esculentum.

HortScience ◽  
2014 ◽  
Vol 49 (12) ◽  
pp. 1558-1562 ◽  
Author(s):  
Yuyu Wang ◽  
Faju Chen ◽  
Yubing Wang ◽  
Xiaoling Li ◽  
Hongwei Liang

High-frequency somatic embryogenesis and plant regeneration were achieved from immature cotyledonary-stage embryos in the endangered plant, Tapiscia sinensis Oliv. Plant growth regulators with different concentrations and combinations on embryogenesis capacity were studied. The optimal explants for in vitro somatic embryogenesis were immature embryos in T. sinensis. A high callus induction rate of 100% was achieved on Murashige and Skoog (MS) basal medium supplemented with 1.0 mg·Ll−1 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5% (w/v) activated charcoal. Alternatively, a high induction rate (96.16%) of somatic embryogenesis was obtained on MS basal medium supplemented with the combination of 0.05 mg·L−1 α-naphthaleneacetic acid (NAA) and 0.2 mg·L−1 6-benzylaminopurine (6-BA), and somatic embryos proliferated fastest on the mentioned medium supplemented with 0.5% (w/v) activated charcoal and 3% (w/v) sucrose, inoculation of explants proliferating 21 times in the 23-day subculture. Of the 100 plantlets transferred to field after the acclimation, 95 (95%) survived. Based on the histocytological observations, the development of somatic embryos was similar to that of zygotic embryos. There were two accumulation peaks of starch grains in the embryogenic calli and in the globular-stage embryos, both closely related to the energy supply, and the embryoids were of multicelluar origin.


2009 ◽  
Vol 61 (3) ◽  
pp. 413-418 ◽  
Author(s):  
Sladjana Jevremovic ◽  
Angelina Subotic ◽  
Milana Trifunovic ◽  
Marija Nikolic

A simple protocol has been developed for plant regeneration by somatic embryogenesis of Southern Adriatic iris (Iris pseudopallida Trinajstic), an endemic species of the Balkan Peninsula. Somatic embryogenesis was induced in zygotic embryo culture on media supplemented with 2,4-dichlorophenoxy acetic acid (2-10 mgL-1) as the sole plant growth regulator, where both embryogenic calli and somatic embryos were induced. Subsequent decrease of 2,4-D in the media promoted formation of somatic embryos. Developed somatic embryos germinated on medium without growth regulators. The regenerated plantlets had diploid chromosome number. Planted plantlets acclimatized very well under greenhouse and garden conditions.


2016 ◽  
Vol 11 (1) ◽  
pp. 55-60 ◽  
Author(s):  
Guomin Shi ◽  
Lina Yang ◽  
Tao He

AbstractA protocol is described for plant regeneration from protoplasts of Gentiana straminea Maxim. via somatic embryogenesis. Protoplasts were isolated from embryogenic calli in an enzyme solution composed of 2% Cellulase Onozuka R-10, 0.5% Macerozyme R-10, 0.5% Hemicellulase, and 0.5 M sorbitol with a yield of 3.0 × 106 protoplasts per gram of fresh weight. Liquid, solid-liquid double layer (sLD) and agar-pool (aPL) culture systems were used for protoplast culture. The aPL culture was the only method that produced embryogenic, regenerative calli. With aPL culture, the highest frequencies of protoplast cell division and colony formation were 39.6% and 16.9%, respectively, on MS medium supplemented with 2 mg/L 2,4-dichlorophenoxyacetic acid (2,4-D) and 0.5 mg/L N6-benzylaminopurine (BA). Microcalli were transferred to solid MS medium containing a reduced concentration of 2,4-D (0.5 mg/L) to promote the formation of embryogenic calli. Somatic embryos developed into plantlets on MS medium supplemented with 2 mg/L BA at a rate of 43.7%.


2009 ◽  
Vol 52 (3) ◽  
pp. 549-554 ◽  
Author(s):  
Cynthia Manyra Corrêa ◽  
Graciele Nicolodi de Oliveira ◽  
Leandro Vieira Astarita ◽  
Eliane Romanato Santarém

Smallanthus sonchifolius has tuberous roots containing large amounts of fructo-oligosaccharides and its medicinal use has increased due to the hypoglycemic properties reported for this species. An efficient system for propagation via somatic embryogenesis is reported using petiole segments cultivated on MS medium supplemented with combinations of BA, kinetin and 2,4-D, under light and darkness conditions. Embryogenic callus was formed in most of the treatments; however, somatic embryogenesis was promoted by the presence of light. Clusters of somatic embryos appeared on callus surface after 50 days of culture. The highest number of embryos was produced on 0.45 µM BA and 4.5 µM 2,4-D. Embryogenic calli were maintained on MS medium containing 4.5 µM BA and 0.045 µM 2,4-D. Embryos converted on hormone-free half-strength MS medium with 2 g.L-1 activated charcoal and plantlets were transferred to non-sterile conditions for acclimatization, showing 100% of survival.


2008 ◽  
Vol 43 (10) ◽  
pp. 1433-1436 ◽  
Author(s):  
Thiago Édson Ribeiro da Silva ◽  
Luciana Cardoso Cidade ◽  
Fátima Cerqueira Alvim ◽  
Júlio Cézar de Mattos Cascardo ◽  
Marcio Gilberto Cardoso Costa

The objective of this work was to evaluated a procedure for somatic embryogenesis and regeneration of cacao (Theobroma cacao L.) elite clones. Petal explants from cacao clones TSH 565 and TSH 1188 were cultured on PCG and SCG-2 media, for calli growth. Somatic embryos were formed on the surface of embryogenic calli after transfer to embryo development (ED) medium. Clone TSH 565 showed a higher embryogenic potential than TSH 1188. The best combination of carbon source for embryo induction in ED medium was genotype-specific. Embryogenic callus formations increased in micropore tape-sealed Petri dishes, irrespective of cacao genotype. Mature somatic embryos were successfully converted into plantlets.


2021 ◽  
Author(s):  
Thiago Sanches Ornellas ◽  
Yohan Fritsche ◽  
Edison Cardona Medina ◽  
Miguel Pedro Guerra

Abstract Bamboos are an important worldwide non-timber forest product with current rising interest due to their environmentally friendly applications. Besides the consolidated uses of the sweet shoots and culms for structural uses, Dendrocalamus asper is an imposing ornamental bamboo for horticulture. The present work aimed to establish in vitro calli culture and plant regeneration through somatic embryogenesis starting from young inflorescences of the giant bamboo, D. asper. Pre-anthesis inflorescences were collected, disinfested, and subjected to callus induction on MS basal medium supplemented by 0 µM, 9 µM, 18 µM, 27 µM, and 36 µM of 2,4-D in combination with 9 µM of 2-iP or 9 µM Kin. The different obtained calli types were characterized and subcultured in 0 µM, 4.5 µM, 9 µM, and 18 µM of 2,4-D in combination with 9 µM of both cytokinins for multiplication and differentiation. Additionally, the explant incision and its inoculation orientation onto culture media were tested for callus induction improvement. The 2,4-D was essential for callus induction, and its combination with both cytokinins resulted in embryogenic callus induction and further somatic embryos regeneration. The subsequent reduction of this auxin to 4.5 µM resulted in somatic embryo maturation. Somatic embryos transferred to a plant growth regulator-free medium resulted in plantlet conversion. The present work showed the feasibility of using inflorescences as explants and the efficiency of using the 2-iP in combination with 2,4-D to callus induction and in vitro bamboo plant regeneration through somatic embryogenesis.


HortScience ◽  
2004 ◽  
Vol 39 (6) ◽  
pp. 1378-1380 ◽  
Author(s):  
C.K. Kim ◽  
J.Y. Oh ◽  
J.D. Chung ◽  
A.M. Burrell ◽  
D.H. Byrne

Somatic embryogenesis was initiated from in vitro-grown leaf explants of rose using an induction period of 4 weeks on MS basal medium supplemented with auxin followed by several subcultures on MS basal medium with cytokinin. `4th of July' showed the highest regeneration frequency (24.4%) on 5.3 μm NAA followed by culture on medium containing 18.2 μm zeatin. `Tournament of Roses' produced somatic embryos when cultured for 4 weeks on medium containing dicamba, 2.3 μm followed by three subcultures on medium containing 18.2 μm zeatin. Embryogenic callus matured on MS media containing 0.5 μm NAA, 6.8 μm zeatin, and 2.9 μm GA3. Long-term cultures were established for both cultivars. Somatic embryos germinated on MS medium containing IBA and BA. Silver nitrate (58.8 μm) enhanced shoot formation and germination of somatic embryos. Plants derived from somatic embryos were acclimatized and successfully established in the greenhouse.


2019 ◽  
Vol 29 (1) ◽  
pp. 33-47 ◽  
Author(s):  
Ribha Saraswat ◽  
Mithilesh Kumar

An efficient in vitro regeneration protocol is reported for common buckwheat. A combination of 0.5 mg/l 2,4-D and 0.2 mg/l BAP with sucrose showed highest induction of somatic embryogenesis from cotyledon and hypocotyl explants. More than 35% of normal somatic embryos matured on MS. MS with 2% sucrose were found best for germination and conversion of somatic embryos to plantlets. In tissue culture, abnormal somatic embryos usually occur. In this report, abnormal embryos are also used to induce shoot organogenesis, adding to the number of final regenerants and ensuring full utilization of regenerative propagules. A treatment of 0.2 mg/l BAP induced meristemoids in 60% of underdeveloped embryos and a combination of 0.5 mg/l BAP and 0.5 mg/l AgNO3 led browning and senescence-free progression of shoot buds to well developed shoots, which were subsequently rooted in half strength MS containing 2% sucrose and 0.25 mg/l IBA. The regenerated plants survived acclimatization, flowered and set seeds. Plant Tissue Cult. & Biotech. 29(1): 33-47, 2019 (June)


Biologia ◽  
2006 ◽  
Vol 61 (3) ◽  
Author(s):  
Yıldız Aydin ◽  
Tijen Talas-Ogras ◽  
Zeliha Ipekçi-Altas ◽  
Nermin Gözükirmizi

AbstractBrassinolide (BR), which is the most biologically active brassinosteroid, was used to examine the potential effect of hormone on cotton somatic embryogenesis. Ten-day-old cotton (Gossypium hirsutum L., cv. Cooker) seedlings were used for explant source and hypocotyls were removed and cultured on MS basal medium with B5 vitamins supplemented with 1 mg/L 6-benzylaminopurine + 0.5 mg/L kinetin for callus induction. After one month proliferating calli pieces were collected and cultured on MS basal medium containing various concentrations of BR (0.1, 0.5, 1.0 µM) with their controls. BR treatments were negatively effective on the fresh weight of calli when compared to control. Differential somatic embryogenesis maturation rates due to BR treatment were observed. Somatic embryogenesis was stimulated especially for transition to cotyledonary phase at 0.5 mg/L BR. Histological preparations from embryogenic calli and somatic embryos at different stages of development revealed the spontaneous polyploidisation during early somatic embryogenesis on BR-treated calli. Present results suggest that BR negatively effected calli growth, however, had a stimulating role in maturation of somatic embryos.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1536
Author(s):  
João Paulo de Morais Oliveira ◽  
Natália Arruda Sanglard ◽  
Adésio Ferreira ◽  
Wellington Ronildo Clarindo

Coffea arabica genotypes present distinct responses in vitro, and somaclonal variation occurrence has been reported. Global cytosine methylation is one of the epigenetic mechanisms that influences the Coffea in vitro responses. We aimed to establish the indirect somatic embryogenesis in C. arabica ‘Catuaí Vermelho’, ‘Caturra’ and ‘Oeiras’, associate the distinct responses to the methylated cytosine genomic level, and check the ploidy stability. Leaf explants were cultured in callus induction and proliferation medium. The resulted calli were transferred to the regeneration medium, and the mature cotyledonary somatic embryos were transferred to the seedling medium. ‘Oeiras’ exhibited the highest number of responsive leaf explants, followed by ‘Caturra’ and ‘Catuaí Vermelho’. Global methylated cytosine level increased over time in the ‘Catuaí Vermelho’ and ‘Caturra’ friable calli, remaining constant in ‘Oeiras’. ‘Oeiras’ did not regenerate somatic embryos, while ‘Catuaí Vermelho’ exhibited the highest number. Somatic embryo regeneration was associated with the increase of the methylated cytosine level. However, the ‘Catuaí Vermelho’ embryogenic calli showed a lower methylated cytosine level than ‘Caturra’. Recovered plantlets exhibited the same 2C value and chromosome number to the explant donors. Therefore, cytosine hypermethylation occurred during C. arabica indirect somatic embryogenesis, influencing cell competence and somatic embryos regeneration.


Sign in / Sign up

Export Citation Format

Share Document