scholarly journals Detection of Novel Goose Parvovirus Disease Associated with Short Beak and Dwarfism Syndrome in Commercial Ducks

Animals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1833 ◽  
Author(s):  
Mohamed A. Soliman ◽  
Ahmed M. Erfan ◽  
Mohamed Samy ◽  
Osama Mahana ◽  
Soad A. Nasef

Derzsy’s disease causes disastrous losses in domestic waterfowl farms. A genetically variant strain of Muscovy duck parvovirus (MDPV) and goose parvovirus (GPV) was named novel goose parvovirus (NGPV), which causes characteristic syndrome in young ducklings. The syndrome was clinically characterized by deformity in beaks and retarded growth, called short beaks and dwarfism syndrome (SBDS). Ten mule and pekin duck farms were investigated for parvovirus in three Egyptian provinces. Despite low recorded mortality rate (20%), morbidity rate was high (70%), but the economic losses were remarkable as a result of retarded growth and low performance. Isolation of NGPV was successful on primary cell culture of embryonated duck liver cells with a clear cytopathic effect. Partial gene sequence of the VP1 gene showed high amino acids identity among isolated strains and close identity with Chinese strains of NGPV, and low identity with classic GPV and MDPV strains. To the best of our knowledge, this can be considered the first record of NGPV infections in Egypt.

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Yanhui Chen ◽  
Ruth Afumba ◽  
Fusheng Pang ◽  
Rongxin Yuan ◽  
Hao Dong

Abstract Derzsy’s disease and Muscovy duck parvovirus disease have become common diseases in waterfowl culture in the world and their potential to cause harm has risen. The causative agents are goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV), which can provoke similar clinical symptoms and high mortality and morbidity rates. In recent years, duck short beak and dwarfism syndrome has been prevalent in the Cherry Valley duck population in eastern China. It is characterised by the physical signs for which it is named. Although the mortality rate is low, it causes stunting and weight loss, which have caused serious economic losses to the waterfowl industry. The virus that causes this disease was named novel goose parvovirus (NGPV). This article summarises the latest research on the genetic relationships of the three parvoviruses, and reviews the aetiology, epidemiology, and necropsy characteristics in infected ducks, in order to facilitate further study.


Animals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3211
Author(s):  
Kuang-Po Li ◽  
Yu-Chen Hsu ◽  
Chih-An Lin ◽  
Poa-Chun Chang ◽  
Jui-Hung Shien ◽  
...  

Goose parvovirus (GPV) and Muscovy duck parvovirus (MDPV) are the main agents associated with waterfowl parvovirus infections that caused great economic losses in the waterfowl industry. In 2020, a recombinant waterfowl parvovirus, 20-0910G, was isolated in a goose flock in Taiwan that experienced high morbidity and mortality. The whole genome of 20-0910G was sequenced to investigate the genomic characteristics of this isolate. Recombination analysis revealed that, like Chinese rMDPVs, 20-0910G had a classical MDPV genomic backbone and underwent two recombination events with classical GPVs at the P9 promoter and partial VP3 gene regions. Phylogenetic analysis of the genomic sequence found that this goose-origin parvovirus was highly similar to the circulating recombinant MDPVs (rMDPVs) isolated from duck flocks in China. The results of experimental challenge tests showed that 20-0910G caused 100% mortality in goose embryos and in 1-day-old goslings by 11 and 12 days post-inoculation, respectively. Taken together, the results indicated that this goose-origin rMDPV was closely related to the duck-origin rMDPVs and was highly pathogenic to young geese.


2021 ◽  
Author(s):  
Yong Wang ◽  
Jianfei Sun ◽  
Da Zhang ◽  
Xu Guo ◽  
Wenhao Shen ◽  
...  

Abstract Recently, a novel duck-origin goose parvovirus (N-GPV) was reported to cause short beak and dwarfism syndrome in ducks. In this study, we performed complete genome sequencing and analyzed three different duck-derived parvoviruses that infected different breeds of ducks. Phylogenetic trees based on gene sequences indicated that they were classical goose parvovirus (C-GPV), Muscovy duck parvovirus (MDPV), and N-GPV, respectively. Furthermore, potential recombination events were found. These results improve our understanding of the diversity of duck-derived parvoviruses in the Anhui province, eastern China, and provide a reference for the prevention of associated diseases.


2016 ◽  
Vol 41 ◽  
pp. 289-291 ◽  
Author(s):  
Shao Wang ◽  
Xiao-xia Cheng ◽  
Shi-long Chen ◽  
Shi-feng Xiao ◽  
Shao-ying Chen ◽  
...  

2019 ◽  
Vol 66 (5) ◽  
pp. 1834-1839 ◽  
Author(s):  
Chunhe Wan ◽  
Rongchang Liu ◽  
Cuiteng Chen ◽  
Longfei Cheng ◽  
Shaohua Shi ◽  
...  
Keyword(s):  

2020 ◽  
Vol 64 (3) ◽  
pp. 355-361 ◽  
Author(s):  
Jie Liu ◽  
Xiaoxia Yang ◽  
Xiaojing Hao ◽  
Yongsheng Feng ◽  
Yuli Zhang ◽  
...  

AbstractIntroductionCoinfection of goose parvovirus (GPV) and duck circovirus (DuCV) occurs commonly in field cases of short beak and dwarfism syndrome (SBDS). However, whether there is synergism between the two viruses in replication and pathogenicity remains undetermined.Material and MethodsWe established a coinfection model of GPV and DuCV in Cherry Valley ducks. Tissue samples were examined histopathologically. The viral loads in tissues were detected by qPCR, and the distribution of the virus in tissues was detected by immunohistochemistry (IHC).ResultsCoinfection of GPV and DuCV significantly inhibited growth and development of ducks, and caused atrophy and pallor of the immune organs and necrosis of the liver. GPV and DuCV synergistically amplified pathogenicity in coinfected ducks. In the early stage of infection, viral loads of both pathogens in coinfected ducks were significantly lower than those in monoinfected ducks (P < 0.05). With the development of the infection process, GPV and DuCV loads in coinfected ducks were significantly higher than those in monoinfected ducks (P < 0.05). Extended viral distribution in the liver, kidney, duodenum, spleen, and bursa of Fabricius was consistent with the viral load increases in GPV and DuCV coinfected ducks.ConclusionThese results indicate that GPV and DuCV synergistically potentiate their replication and pathogenicity in coinfected ducks.


Author(s):  
Jerbeson Hoffmann da Silva ◽  
Renata Rebesquini ◽  
Diorges Henrique Setim ◽  
Cláudia Almeida Scariot ◽  
Maria Isabel Botelho Vieira ◽  
...  

Abstract Cattle tick fever (CTF) causes significant economic losses in the livestock sector. The pathogenic action of the hemoparasites is associated with anemia, weight loss, abortion and reduced productivity, which result with animal death. Programs to prevent CTF involve several procedures, including immunization, chemoprophylaxis and use of ectoparasiticides, together with the vector control in the environment. The objective of this study was to report an acute outbreak of CTF in a group of 157 Hereford cattle from a farm without presence of the vector, that were moved to a farm in the same state with a high tick infestation (Rhipicephalus microplus). On the day before the transportation, the animals received a chemoprophylaxis with imidocarb dipropionate (3 mg/kg, SC), which was repeated 21 days after the first application. After 42 days, some animals showed signs compatible with CTF, which was confirmed through clinical examination, necropsy, histopathological and hemoparasitological analyses. The morbidity rate was 37.6% and the mortality rate was 24.8%. Calves that were recently weaned were the group most affected with the tick fever, morbidity (100% and mortality (73%). Chemoprophylaxis in association with use of ectoparasiticides was not sufficient to control the outbreak of the disease.


2021 ◽  
Author(s):  
Yonglin Li ◽  
Jingyu Jia ◽  
Qingling Mi ◽  
Yufeng Li ◽  
Yuehua Gao ◽  
...  

Abstract Short beak and dwarfism syndrome (SBDS) emerged in cherry valley duck flocks in China in 2015, and novel goose parvovirus (NGPV) was proved to be the etiological agent of SBDS. To date, whether SBDS-related NGPV isolates possess common molecular characteristics remains unknown. In this study, three new NGPV strains (namely, SDHT16, SDJN19, and SDLC19) were isolated from diseased ducks showing typical SBDS and successfully passaged in embryonated goose or cherry valley duck embryo. The whole genomes of three NGPV strains shared 98.9%–99.7% homologies between each other but showed slightly lower homologies (95.2%–96.1%) with the classical GPV strains. A total of 16 common amino acid point mutations were produced in the VP1 proteins of six NGPV strains (SDHT16, SDJN19, SDLC19, QH, JS1, and SDLC01) compared with the classical Chinese GPV strains, among which nine amino acid sites were identical to the European GPV strain B. The non-structural protein Rep1 of the six NGPV strains generated 12 common amino acid mutations compared with the classical GPV strains. The phylogenetic analysis indicated that the Chinese NGPV strains clustered with the European SBDS-related NGPV strains, forming a separate branch, distinct from the group formed by the classical GPV strains. Taken together, the present study unveils the common molecular characteristics of the NGPV isolates and directs the conclusion that the Chinese NGPV isolates probably originate from a common ancestor with the European SBDS-related NGPV.


Sign in / Sign up

Export Citation Format

Share Document