viral distribution
Recently Published Documents


TOTAL DOCUMENTS

35
(FIVE YEARS 13)

H-INDEX

10
(FIVE YEARS 1)

2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiao-Xin Wu ◽  
Song-Jia Tang ◽  
Shu-Hao Yao ◽  
Yu-Qin Zhou ◽  
Lan-Lan Xiao ◽  
...  

Abstract Background The highly pathogenic Influenza H7N9 virus is believed to cause multiple organ infections. However, there have been few systematic animal experiments demonstrating the virus distribution after H7N9 virus infection. The present study was carried out to investigate the viral distribution and pathological changes in the main organs of mice after experimental infection with highly pathogenic H7N9 virus. Methods Infection of mice with A/Guangdong/GZ8H002/2017(H7N9) virus was achieved via nasal inoculation. Mice were killed at 2, 3, and 7 days post infection. The other mice were used to observe their illness status and weight changes. Reverse transcription polymerase chain reaction and viral isolation were used to analyse the characteristics of viral invasion. The pathological changes of the main organs were observed using haematoxylin and eosin staining and immunohistochemistry. Results The weight of H7N9 virus-infected mice increased slightly in the first two days. However, the weight of the mice decreased sharply in the following days, by up to 20%. All the mice had died by the 8th day post infection and showed multiple organ injury. The emergence of viremia in mice was synchronous with lung infection. On the third day post infection, except in the brain, the virus could be isolated from all organs (lung, heart, kidney, liver, and spleen). On the seventh day post infection, the virus could be detected in all six organs. Brain infection was detected in all mice, and the viral titre in the heart, kidney, and spleen infection was high. Conclusion Acute diffuse lung injury was the initial pathogenesis in highly pathogenic H7N9 virus infection. In addition to lung infection and viremia, the highly pathogenic H7N9 virus could cause multiple organ infection and injury.


2021 ◽  
Author(s):  
Xiao-Xin Wu ◽  
Song-Jia Tang ◽  
Shu-Hao Yao ◽  
Yu-Qin Zhou ◽  
Lan-Lan Xiao ◽  
...  

Abstract Background The highly pathogenic Influenza H7N9 virus is believed to cause multiple organ infections. However, there have been few systematic animal experiments demonstrating the virus distribution after H7N9 virus infection. The present study was carried out to investigate the viral distribution and pathological changes in the main organs of mice after experimental infection with highly pathogenic H7N9 virus. Methods Infection of mice with A/Guangdong/GZ8H002/2017(H7N9) virus was achieved via nasal inoculation. Mice were killed at 2, 3, and 7 days post infection. The other mice were used to observe their illness status and weight changes. Reverse transcription polymerase chain reaction and viral isolation were used to analyse the characteristics of viral invasion. The pathological changes of the main organs were observed using haematoxylin and eosin staining and immunohistochemistry. Results The weight of H7N9 virus-infected mice increased slightly in the first two days. However, the weight of the mice decreased sharply in the following days, by up to 20%. All the mice had died by the 8th day post infection and showed multiple organ injury. The emergence of viremia in mice was synchronous with lung infection. On the third day post infection, except in the brain, the virus could be isolated from all organs (lung, heart, kidney, liver, and spleen). On the seventh day post infection, the virus could be detected in all six organs. Brain infection was detected in all mice, and the viral titre in the heart, kidney, and spleen infection was high. Conclusion Acute diffuse lung injury was the initial pathogenesis in highly pathogenic H7N9 virus infection. In addition to lung infection and viremia, the highly pathogenic H7N9 virus could cause multiple organ infection and injury.


2021 ◽  
Author(s):  
Xiao-Xin Wu ◽  
Song-Jia Tang ◽  
Shu-Hao Yao ◽  
Yu-Qin Zhou ◽  
Lan-Lan Xiao ◽  
...  

Abstract Background: The highly pathogenic Influenza H7N9 virus is believed to cause multiple organ infections. However, there have been few systematic animal experiments demonstrating the virus distribution after H7N9 virus infection. The present study was carried out to investigate the viral distribution and pathological changes in the main organs of mice after experimental infection with highly pathogenic H7N9 virus.Methods: The mice were infected with A/Guangdong/GZ8H002/2017(H7N9) virus via nasal inoculation. Some mice were killed at 2, 3, and 7 days after infection. The other mice were used to observe their illness status and weight changes. The characteristics of viral invasion were analysed using reverse transcription polymerase chain reaction and viral isolation. The pathological changes of the main organs were observed using haematoxylin and eosin staining and immunohistochemistry.Results: The weight of mice infected with A/Guangdong/GZ8H002/2017(H7N9) virus increased slightly in the first two days. However, the weight of the mice decreased sharply in the following days by up to 20%. All the mice had died by the 8th day after infection and showed multiple organ injury. The emergence of viremia in mice was synchronous with lung infection. On the third day after infection, except in the brain, the virus could be isolated from all organs (lung, heart, kidney, liver, and spleen). On the seventh day after infection, the virus could be detected in all six organs. Brain infection was detected in all mice, and the viral titre in the heart, kidney, and spleen infection was high.Conclusion: Acute diffuse lung injury was the initial pathogenesis in highly pathogenic H7N9 virus infection. In addition to lung infection and viremia, the highly pathogenic H7N9 virus could cause multiple organ infection and injury.


2021 ◽  
Vol 17 (8) ◽  
pp. e1009739
Author(s):  
Velia Penza ◽  
Stephen J. Russell ◽  
Autumn J. Schulze

Long polycytidine (polyC) tracts varying in length from 50 to 400 nucleotides were first described in the 5′-noncoding region (NCR) of genomes of picornaviruses belonging to the Cardio- and Aphthovirus genera over 50 years ago, but the molecular basis of their function is still unknown. Truncation or complete deletion of the polyC tracts in picornaviruses compromises virulence and pathogenicity but do not affect replicative fitness in vitro, suggesting a role as “viral security” RNA element. The evidence available suggests that the presence of a long polyC tract is required for replication in immune cells, which impacts viral distribution and targeting, and, consequently, pathogenic progression. Viral attenuation achieved by reduction of the polyC tract length has been successfully used for vaccine strategies. Further elucidation of the role of the polyC tract in viral replication cycle and its connection with replication in immune cells has the potential to expand the arsenal of tools in the fight against cancer in oncolytic virotherapy (OV). Here, we review the published data on the biological significance and mechanisms of action of the polyC tract in viral pathogenesis in Cardio- and Aphthoviruses.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zinnia P. Parra-Guillen ◽  
Tomoko Freshwater ◽  
Youfang Cao ◽  
Kapil Mayawala ◽  
Sara Zalba ◽  
...  

V937 is an investigational novel oncolytic non-genetically modified Kuykendall strain of Coxsackievirus A21 which is in clinical development for the treatment of advanced solid tumor malignancies. V937 infects and lyses tumor cells expressing the intercellular adhesion molecule I (ICAM-I) receptor. We integrated in vitro and in vivo data from six different preclinical studies to build a mechanistic model that allowed a quantitative analysis of the biological processes of V937 viral kinetics and dynamics, viral distribution to tumor, and anti-tumor response elicited by V937 in human xenograft models in immunodeficient mice following intratumoral and intravenous administration. Estimates of viral infection and replication which were calculated from in vitro experiments were successfully used to describe the tumor response in vivo under various experimental conditions. Despite the predicted high clearance rate of V937 in systemic circulation (t1/2 = 4.3 min), high viral replication was observed in immunodeficient mice which resulted in tumor shrinkage with both intratumoral and intravenous administration. The described framework represents a step towards the quantitative characterization of viral distribution, replication, and oncolytic effect of a novel oncolytic virus following intratumoral and intravenous administrations in the absence of an immune response. This model may further be expanded to integrate the role of the immune system on viral and tumor dynamics to support the clinical development of oncolytic viruses.


Cell Research ◽  
2021 ◽  
Author(s):  
Xiao-Hong Yao ◽  
Tao Luo ◽  
Yu Shi ◽  
Zhi-Cheng He ◽  
Rui Tang ◽  
...  

AbstractSevere COVID-19 disease caused by SARS-CoV-2 is frequently accompanied by dysfunction of the lungs and extrapulmonary organs. However, the organotropism of SARS-CoV-2 and the port of virus entry for systemic dissemination remain largely unknown. We profiled 26 COVID-19 autopsy cases from four cohorts in Wuhan, China, and determined the systemic distribution of SARS-CoV-2. SARS-CoV-2 was detected in the lungs and multiple extrapulmonary organs of critically ill COVID-19 patients up to 67 days after symptom onset. Based on organotropism and pathological features of the patients, COVID-19 was divided into viral intrapulmonary and systemic subtypes. In patients with systemic viral distribution, SARS-CoV-2 was detected in monocytes, macrophages, and vascular endothelia at blood–air barrier, blood–testis barrier, and filtration barrier. Critically ill patients with long disease duration showed decreased pulmonary cell proliferation, reduced viral RNA, and marked fibrosis in the lungs. Permanent SARS-CoV-2 presence and tissue injuries in the lungs and extrapulmonary organs suggest direct viral invasion as a mechanism of pathogenicity in critically ill patients. SARS-CoV-2 may hijack monocytes, macrophages, and vascular endothelia at physiological barriers as the ports of entry for systemic dissemination. Our study thus delineates systemic pathological features of SARS-CoV-2 infection, which sheds light on the development of novel COVID-19 treatment.


2021 ◽  
Author(s):  
M. T. Jahn ◽  
T. Lachnit ◽  
S. M. Markert ◽  
C. Stigloher ◽  
L. Pita ◽  
...  

AbstractBacteriophages (phages) are ubiquitous elements in nature, but their ecology and role in animals remains little understood. Sponges represent the oldest known extant animal-microbe symbiosis and are associated with dense and diverse microbial consortia. Here we investigate the tripartite interaction between phages, bacterial symbionts, and the sponge host. We combined imaging and bioinformatics to tackle important questions on who the phage hosts are and what the replication mode and spatial distribution within the animal is. This approach led to the discovery of distinct phage-microbe infection networks in sponge versus seawater microbiomes. A new correlative in situ imaging approach (‘PhageFISH-CLEM‘) localised phages within bacterial symbiont cells, but also within phagocytotically active sponge cells. We postulate that the phagocytosis of free virions by sponge cells modulates phage-bacteria ratios and ultimately controls infection dynamics. Prediction of phage replication strategies indicated a distinct pattern, where lysogeny dominates the sponge microbiome, likely fostered by sponge host-mediated virion clearance, while lysis dominates in seawater. Collectively, this work provides new insights into phage ecology within sponges, highlighting the importance of tripartite animal-phage-bacterium interplay in holobiont functioning. We anticipate that our imaging approach will be instrumental to further understanding of viral distribution and cellular association in animal hosts.


2021 ◽  
Vol 168 (3) ◽  
Author(s):  
Aparna Sreekumar ◽  
Parvathi Ammini ◽  
Jasna Vijayan ◽  
Pradeep Ram Angia Sriram ◽  
Sime-Ngando Telesphore

Pathogens ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 633
Author(s):  
Julia Sehl ◽  
Jens Peter Teifke

The pseudorabies virus (PRV) is an alphaherpesvirus and the causative agent of Aujeszky’s disease (AD). PRV infects a wide range of animal species including swine as the natural host as well as ruminants, carnivores, rodents and lagomorphs. In these species, except for the pig, PRV infection causes acute, severe disease, characterized by insatiable itching, and is always lethal. Horses, chickens and non-human primates have been shown to be largely resistant to PRV infection, while disease in humans is still controversial. PRV is a pantropic virus, which preferably invades neural tissue, but also infects epithelia of various organs, whereupon multisystemic lesions may result. Although AD is mainly associated with severe pruritus, also known as “mad itch”, there are notable differences regarding infection route, clinical signs, viral distribution and lesion patterns in different animal species. In this comprehensive review, we will present clinico-pathologic findings from different species, which have been either shown to be susceptible to PRV infection or have been tested experimentally.


Sign in / Sign up

Export Citation Format

Share Document