scholarly journals Functional Characterization of Melanocortin-3 Receptor in a Hibernating Cavefish Onychostoma macrolepis

Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 38
Author(s):  
Lian Wu ◽  
Huixia Yu ◽  
Haolin Mo ◽  
Xianyong Lan ◽  
Chuanying Pan ◽  
...  

Melanocortin-3 receptor (MC3R) plays an important role in the energy homeostasis of animals under different nutritional conditions. Onychostoma macrolepis is a hibernating cavefish found in the northern part of the Yangtze River, and its adaptation to a nutrient-poor environment has attracted growing interest. In this study, we characterized the protein structure of Onychostoma macrolepis Mc3r (omMc3r), examined its tissue distribution, and investigated its function in mediating cellular signaling. We showed that the CDS of omMc3r is 978 bp, encoding a putative protein of 325 amino acids. Homology and phylogenetic analyses indicated that omMc3r is evolutionary close to cyprinids. Real-time quantitative PCR (RT-qPCR) revealed that omMc3r was highly expressed in the liver and brain. The functions of omMc3r to mediate ligands activating downstream signaling have also been confirmed by using signal pathway-specific reporters. The four agonists α-MSH, β-MSH, NDP-MSH, and ACTH (1–24) can all activate the cAMP and MAPK/ERK signaling pathway, albeit with different potency orders. The “primitive” ligand ACTH (1–24) had the highest potency on the cAMP signaling pathway, while the synthetic ligand NDP-MSH had the highest activation effect on the MAPK/ERK signaling pathway. This research will lay the foundation for studying the energy regulation mechanism of cavefish in an oligotrophic environment.

2021 ◽  
Author(s):  
Yongjing Li ◽  
Huiru Fu ◽  
Fuqiang Zhang ◽  
Liting Ren ◽  
Jing Tian ◽  
...  

AbstractThe involvement of insulin/insulin-like growth factor (IIS) signaling pathway in growth regulation of marine invertebrates remains largely unexplored. In this study, we used a fast-growing Pacific oyster (Crassostrea gigas) variety “Haida No.1” as material to unravel the role of IIS system in growth regulation in oysters. Systematic bioinformatics analyses allowed to identify major components of IIS signaling pathway and insulin-like peptide receptor (ILPR) mediated signaling pathways, including PI3K-AKT, RAS-MAPK, and TOR, in C. gigas. Expression levels of the major genes in IIS and its downstream signaling pathways were significantly higher in “Haida No.1” than wild oysters, suggesting their involvement in growth regulation of C. gigas. Expression profiles of IIS and its downstream signaling pathway genes were significantly altered by nutrient abundance and culture temperature. These results suggested that IIS signaling pathway coupled with the ILPR mediated signaling pathways orchestrated energy homeostasis to regulate growth in the Pacific oyster.Research HighlightsILPR, IRS, IGFBPRP, and IGFALS genes were characterized in the C. gigas.Major genes of IIS signaling pathway were highly expressed in fast-growing C. gigas.IIS and downstream pathways participates in energy homeostasis of oysters.ILPR mediated signaling pathways orchestrate growth regulation in oysters.


2020 ◽  
Author(s):  
Lu Yang ◽  
Haohao Cao ◽  
Xiaoping Zhang ◽  
Liangxian Gui ◽  
Qiang Chen ◽  
...  

Abstract Background: Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as adaptation to the environment. However, little information is available about the ADK genes in tomato (Solanum lycopersicum), an important economic crop.Results: To investigate the characteristics and functions of ADK genes in tomato, a total of 11 ADK genes were identified and named according to their chromosomal locations. The ADK family was divided into five groups and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. Sequence analysis revealed 4-19 exons in all SlADKs and most members possessed four. The 11 SlADKs were randomly distributed on nine of the 12 tomato chromosomes. A cis-element analysis inferred that several stress response elements were found on the promoters of SlADKs. The online TomExpress platform prediction revealed that SlADKs were expressed in various tissues and organs, basically consistent with the data obtained from real-time quantitative PCR (qPCR). The qPCR verification was also used to determine the expression level of SlADKs and demonstrated that the genes responded to multiple abiotic stresses, such as drought, salt and cold. For example, almost all SlADKs contained two expression peaks at 9 and 48 h following salt treatment. The qPCR results showed that SlADK transcription was responsive to most of the applied hormone treatment: methyl jasmonate, ethylene, salicylic acid, indole 3-acetic acid and abscisic acid. Notably, SlADK2 and 4 exhibited significant changes under multiple stress treatments.Conclusions: These results provide valuable information for clarifying the evolutionary relationship of the tomato ADK family and in aiding functional characterization of SlADKs in further research.


2020 ◽  
Author(s):  
Lu Yang ◽  
Haohao Cao ◽  
Xiaoping Zhang ◽  
Liangxian Gui ◽  
Qiang Chen ◽  
...  

Abstract Background: Adenylate kinase (ADK) is widely distributed in organisms and plays an important role in cellular energy homeostasis. In plants, ADK has important functions in plant growth and development regulation as well as adaptation to the environment. However, little information is available about the ADK genes in tomato (Solanum lycopersicum), an important economic crop.Results: To investigate the characteristics and functions of ADK genes in tomato, a total of 11 ADK genes were identified and named according to their chromosomal locations. The ADK family in Arabidopsis tomato, potato and rice was divided into six groups and motif analysis revealed that each SlADK protein contained five to eight conserved motifs. Sequence analysis revealed 4-19 exons in all SlADKs and most members possessed four. Cis-element analysis inferred that several stress response elements were found on the promoters of SlADKs. The 11 SlADKs were randomly distributed on nine of the 12 tomato chromosomes. Three duplication events were observed between tomato chromosome, and a high degree of conservation of synteny was found between tomato and potato. The online TomExpress platform prediction revealed that SlADKs were expressed in various tissues and organs, basically consistent with the data obtained from real-time quantitative PCR (qPCR). The qPCR verification was also used to determine the expression level of SlADKs and demonstrated that the genes responded to multiple abiotic stresses, such as drought, salt and cold. Besides, the qPCR results showed that SlADK transcription was responsive to most of the applied hormone treatment: methyl jasmonate, ethylene, salicylic acid, indole 3-acetic acid and abscisic acid. Notably, SlADK2 and 4 exhibited significant changes under multiple stress treatments. Furthermore, correlation networks analysis revealed co-expressed genes between SlADKs and other tomato functional genes.Conclusions: These results provide valuable information for clarifying the evolutionary relationship of the tomato ADK family and in aiding functional characterization of SlADKs in further research.


2020 ◽  
Vol 45 (3) ◽  
Author(s):  
Shufeng Cheng ◽  
Liang Li ◽  
Chunquan Song ◽  
Huijing Jin ◽  
Shouguo Ma ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xiaoling Li ◽  
Baixin Lin ◽  
Zhiping Lin ◽  
Yucui Ma ◽  
Qu Wang ◽  
...  

AbstractFucosterol, a sterol isolated from brown algae, has been demonstrated to have anti-cancer properties. However, the effects and underlying molecular mechanism of fucosterol on non-small cell lung cancer remain to be elucidated. In this study, the corresponding targets of fucosterol were obtained from PharmMapper, and NSCLC related targets were gathered from the GeneCards database, and the candidate targets of fucosterol-treated NSCLC were predicted. The mechanism of fucosterol against NSCLC was identified in DAVID6.8 by enrichment analysis of GO and KEGG, and protein–protein interaction data were collected from STRING database. The hub gene GRB2 was further screened out and verified by molecular docking. Moreover, the relationship of GRB2 expression and immune infiltrates were analyzed by the TIMER database. The results of network pharmacology suggest that fucosterol acts against candidate targets, such as MAPK1, EGFR, GRB2, IGF2, MAPK8, and SRC, which regulate biological processes including negative regulation of the apoptotic process, peptidyl-tyrosine phosphorylation, positive regulation of cell proliferation. The Raf/MEK/ERK signaling pathway initiated by GRB2 showed to be significant in treating NSCLC. In conclusion, our study indicates that fucosterol may suppress NSCLC progression by targeting GRB2 activated the Raf/MEK/ERK signaling pathway, which laying a theoretical foundation for further research and providing scientific support for the development of new drugs.


Author(s):  
Guowei Gong ◽  
Yuzhong Zheng ◽  
Xiangpeng Kong ◽  
Zhen Wen

Sign in / Sign up

Export Citation Format

Share Document