scholarly journals Impact of Classical Counterconditioning (Quiet Kennel Exercise) on Barking in Kenneled Dogs—A Pilot Study

Animals ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 171
Author(s):  
Samantha Zurlinden ◽  
Stephany Spano ◽  
Emily Griffith ◽  
Sara Bennett

Excessive barking is a major source of noise pollution in dog kennels and negatively impacts welfare. Because resources are often limited, minimizing barking in the simplest and most easily implementable way is imperative. This pilot study implemented a Quiet Kennel Exercise (QKE) that utilized classical counterconditioning to change the dogs’ negative emotional state (which can lead to barking) to a more positive emotional state. Therefore, barking motivation is reduced, so barking should decrease. This study aims to show proof of concept that decreasing barking through classical counterconditioning is effective. It was conducted in one ward of day-time boarding kennels at North Carolina State University College of Veterinary Medicine. Data was collected three times per day and included decibel readings, number of dogs present, and number of dogs barking during a 5-day initial baseline and 10-day intervention period. During baseline, people passing through the ward acted as they normally would. During intervention, passersby were asked to simply toss each dog a treat regardless of the dogs’ behaviors in the kennel. Descriptive results show improvement in maximum level of barking after QKE, fewer dogs barking over time, dogs barking less each time, and the most improvement noted in the afternoon.

Weed Science ◽  
2021 ◽  
pp. 1-21
Author(s):  
Erika J. Haug ◽  
Khalied A. Ahmed ◽  
Travis W. Gannon ◽  
Rob J. Richardson

Abstract Additional active ingredients are needed for use in aquatic systems in order to respond to new threats or treatment scenarios, enhance selectivity, reduce use rates, and to mitigate the risk of herbicide-resistance. Florpyrauxifen-benzyl is a new synthetic auxin developed for use as an aquatic herbicide. A study was conducted at North Carolina State University, in which 10 µg L−1 of 25% radiolabeled florpyrauxifen-benzyl was applied to the isolated shoot tissue of ten different aquatic plant species in order to elucidate absorption and translocation patterns in these species. Extremely high levels of shoot absorption were observed for all species and uptake was rapid. Highest shoot absorptions were observed for crested floatingheart [Nymphoides cristata (Roxb.) Kuntze] (A192 =20 µg g−1), dioecious hydrilla [Hydrilla verticillata (L.f.) Royle] (A192 =25.3 µg g−1), variable watermilfoil (Myriophyllum heterophylum Michx.) (A192 =40.1 µg g−1) and Eurasian watermilfoil (Myriophyllum spicatum L.) (A192 =25.3 µg g−1). Evidence of translocation was observed in all rooted species tested with the greatest translocation observed in N. cristata (1.28 µg g-1 at 192 HAT). The results of this study add to the growing body of knowledge surrounding the behavior of this newly registered herbicide within aquatic plants.


BioResources ◽  
2014 ◽  
Vol 10 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Steve McKeand

Nowhere in the world have tree improvement and silviculture had a bigger impact on forest productivity and value to landowners than in the southern US. The economic impact from almost 60 years of tree improvement in the southern United States has been staggering. For example, over 300,000 hectares are planted each year with seedlings from the breeding efforts with loblolly pine (Pinus taeda) by members and staff of the North Carolina State University Cooperative Tree Improvement Program. The present value of continued genetic gains from traditional tree improvement efforts is estimated to be $2.5 billion USD to landowners and citizens in the southern US.


EDIS ◽  
2019 ◽  
Vol 2019 (3) ◽  
Author(s):  
Marcelo Wallau ◽  
Joao Vendramini

Determining forage moisture is an essential procedure for estimating forage mass in pastures, determining harvesting or baling point for preserved forages, and calculating dry matter of feedstuff for total mixed rations. This 3-page document discusses methods and pieces of equipment available to estimate forage moisture. Written by M. Wallau and J. Vendramini, and published by the UF/IFAS Agronomy Department, revised June 2019.  http://edis.ifas.ufl.edu/ag181 Original publication: Chambliss, Carrol. 2002. “Forage Moisture Testing”. EDIS 2002 (1). https://journals.flvc.org/edis/article/view/108091. June 2002 version was adapted from Chamblee, D. S. and J. T Green, Jr. 1995. Production and Utilization of Pasture and Forages in North Carolina, Technical Bulletin 305. Raleigh: North Carolina Agricultural Research Service, North Carolina State University. https://content.ces.ncsu.edu/production-and-utilization-of-pastures-and-forages-in-north-carolina 


Sign in / Sign up

Export Citation Format

Share Document