scholarly journals Bringing the Heavy Chain to Light: Creating a Symmetric, Bivalent IgG-Like Bispecific

Antibodies ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 62
Author(s):  
Anusuya Ramasubramanian ◽  
Rachel Tennyson ◽  
Maureen Magnay ◽  
Sagar Kathuria ◽  
Tara Travaline ◽  
...  

Bispecific molecules are biologically significant, yet their complex structures pose important manufacturing and pharmacokinetic challenges. Nevertheless, owing to similarities with monoclonal antibodies (mAbs), IgG-like bispecifics conceptually align well with conventional expression and manufacturing platforms and often exhibit potentially favorable drug metabolism and pharmacokinetic (DMPK) properties. However, IgG-like bispecifics do not possess target bivalency and current designs often require tedious engineering and purification to ensure appropriate chain pairing. Here, we present a near-native IgG antibody format, the 2xVH, which can create bivalency for each target or epitope and requires no engineering for cognate chain pairing. In this modality, two different variable heavy (VH) domains with distinct binding specificities are grafted onto the first constant heavy (CH1) and constant light (CL) domains, conferring the molecule with dual specificity. To determine the versatility of this format, we characterized the expression, binding, and stability of several previously identified soluble human VH domains. By grafting these domains onto an IgG scaffold, we generated several prototype 2xVH IgG and Fab molecules that display similar properties to mAbs. These molecules avoided the post-expression purification necessary for engineered bispecifics while maintaining a capacity for simultaneous dual binding. Hence, the 2xVH format represents a bivalent, bispecific design that addresses limitations of manufacturing IgG-like bispecifics while promoting biologically-relevant dual target engagement.

2013 ◽  
Vol 8 (1) ◽  
pp. 113-116 ◽  
Author(s):  
Christine E. Prosser ◽  
Lorna C. Waters ◽  
Frederick W. Muskett ◽  
Vaclav Veverka ◽  
Philip W. Addis ◽  
...  

2019 ◽  
Vol 25 (2) ◽  
pp. 215-222
Author(s):  
Hyun Yong Jin ◽  
Yanyan Tudor ◽  
Kaylee Choi ◽  
Zhifei Shao ◽  
Brian A. Sparling ◽  
...  

The real-time quantification of target engagement (TE) by small-molecule ligands in living cells remains technically challenging. Systematic quantification of such interactions in a high-throughput setting holds promise for identification of target-specific, potent small molecules within a pathophysiological and biologically relevant cellular context. The salt-inducible kinases (SIKs) belong to a subfamily of the AMP-activated protein kinase (AMPK) family and are composed of three isoforms in humans (SIK1, SIK2, and SIK3). They modulate the production of pro- and anti-inflammatory cytokines in immune cells. Although pan-SIK inhibitors are sufficient to reverse SIK-dependent inflammatory responses, the apparent toxicity associated with SIK3 inhibition suggests that isoform-specific inhibition is required to realize therapeutic benefit with acceptable safety margins. Here, we used the NanoBRET TE intracellular kinase assay, a sensitive energy transfer technique, to directly measure molecular proximity and quantify TE in HEK293T cells overexpressing SIK2 or SIK3. Our 384-well high-throughput screening of 530 compounds demonstrates that the NanoBRET TE intracellular kinase assay was sensitive and robust enough to reveal differential engagement of candidate compounds with the two SIK isoforms and further highlights the feasibility of high-throughput implementation of NanoBRET TE intracellular kinase assays for target-driven small-molecule screening.


1994 ◽  
Vol 10 (12) ◽  
pp. 1639-1649 ◽  
Author(s):  
ERIC M.M. van der DONK ◽  
MARTIN SCHUTTEN ◽  
ALBERT D.M.E. OSTERHAUS ◽  
ROGER W.J. van der HEIJDEN

2020 ◽  
Author(s):  
Sophia Michelchen ◽  
Burkhard Micheel ◽  
Katja Hanack

AbstractGenerating monoclonal antibodies to date is a time intense process requiring immunization of laboratory animals. The transfer of the humoral immune response into in vitro settings shortens this process and circumvents the necessity of animal immunization. However, orchestrating the complex interplay of immune cells in vitro is very challenging. We aimed for a simplified approach focusing on the protagonist of antibody production: the B lymphocyte. We activated purified murine B lymphocytes in vitro with combinations of antigen and stimuli. Within ten days of culture we induced specific IgM and IgG antibody responses against a viral coat protein. Permanently antibody-producing hybridomas were generated. Furthermore we used this method to induce a specific antibody response against Legionella pneumophila. We thus established an effective protocol to generate monoclonal antibodies in vitro. By overcoming the necessity of in vivo immunization it may be the first step towards a universal strategy to generate antibodies from various species.


1988 ◽  
Vol 36 (4) ◽  
pp. 329-340 ◽  
Author(s):  
Sandra K. Lemmon ◽  
Vance P. Lemmon ◽  
Elizabeth W. Jones

Sign in / Sign up

Export Citation Format

Share Document