scholarly journals Chemical, Cytotoxic, and Anti-Inflammatory Assessment of Honey Bee Venom from Apis mellifera intermissa

Antibiotics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1514
Author(s):  
Iouraouine El Mehdi ◽  
Soraia I. Falcão ◽  
Mustapha Harandou ◽  
Saïd Boujraf ◽  
Ricardo C. Calhelha ◽  
...  

The venom from Apis mellifera intermissa, the main honey bee prevailing in Morocco, has been scarcely studied, despite its known potential for pharmacological applications. In the present work, we investigated the composition, the anti-inflammatory activity, and the venom’s cytotoxic properties from fifteen honey bee venom (HBV) samples collected in three regions: northeast, central, and southern Morocco. The chemical assessment of honey bee venom was performed using LC-DAD/ESI/MSn, NIR spectroscopy and AAS spectroscopy. The antiproliferative effect was evaluated using human tumor cell lines, including breast adenocarcinoma, non-small cell lung carcinoma, cervical carcinoma, hepatocellular carcinoma, and malignant melanoma. Likewise, we assessed the anti-inflammatory activity using the murine macrophage cell line. The study provides information on the honey bee venom subspecies’ main components, such as melittin, apamin, and phospholipase A2, with compositional variation depending on the region of collection. Contents of toxic elements such as cadmium, chromium, and plumb were detected at a concentration below 5 ppm, which can be regarded as safe for pharmaceutical use. The data presented contribute to the first study in HBV from Apis mellifera intermissa and highlight the remarkable antiproliferative and anti-inflammatory effects of HBV, suggesting it to be a candidate natural medicine to explore.

Toxicon ◽  
1983 ◽  
Vol 21 ◽  
pp. 29-32 ◽  
Author(s):  
Barbara EC Banks ◽  
Christopher E Dempsey ◽  
E. Barboni

Toxicon ◽  
2012 ◽  
Vol 60 (2) ◽  
pp. 115-116
Author(s):  
Mohammad Nabiuni ◽  
Kazem Parivar ◽  
Bahman Zeynali ◽  
Azar Sheikholeslami ◽  
Latifeh Karimzadeh

Biomolecules ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 315 ◽  
Author(s):  
Soraia I. Falcão ◽  
Ricardo C. Calhelha ◽  
Soumaya Touzani ◽  
Badiaâ Lyoussi ◽  
Isabel C. F. R. Ferreira ◽  
...  

Propolis is a resin manufactured by bees through the mixture of plant exudates and waxes with secreted substances from their metabolism, resulting in a complex mixture of natural substances of which quality depends on the phytogeographic and climatic conditions around the hive. The present study investigated the contribution of phenolic compounds to the cytotoxic and anti-inflammatory activities of propolis. The phenolic composition was evaluated by liquid chromatography with diode-array detection coupled to electrospray ionization tandem mass spectrometry (LC/DAD/ESI-MSn) analysis after phenolic extraction. The cytotoxicity of the extracts was checked using human tumor cell lines (MCF7- breast adenocarcinoma, NCI-H460- non-small cell lung carcinoma, HeLa- cervical carcinoma, HepG2- hepatocellular carcinoma, and MM127- malignant melanoma), as well as non-tumor cells (a porcine liver primary culture-PLP2). The anti-inflammatory activity was assessed using the murine macrophage (RAW 264.7) cell line. The results showed a composition rich in phenolic acids, such as caffeic and p-coumaric acid, as well as flavonoids, such as pinocembrin, pinobanksin, and pinobanksin-3-O-butyrate. Samples MP2 from Sefrou and MP3 from Moulay Yaâcoub presented a high concentration in phenolic compounds, while MP1 and MP4 from Boulemane and Immouzzer Mermoucha, respectively, showed similar composition with low bioactivity. The higher concentration of phenolic compound derivatives, which seems to be the most cytotoxic phenolic class, can explain the pronounced antitumor and anti-inflammatory activity observed for sample MP2.


Apidologie ◽  
2015 ◽  
Vol 47 (5) ◽  
pp. 631-641 ◽  
Author(s):  
Noureddine Adjlane ◽  
Benjamin Dainat ◽  
Laurent Gauthier ◽  
Vincent Dietemann

Sign in / Sign up

Export Citation Format

Share Document