scholarly journals Differences in Cadmium Accumulation, Detoxification and Antioxidant Defenses between Contrasting Maize Cultivars Implicate a Role of Superoxide Dismutase in Cd Tolerance

Antioxidants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1812
Author(s):  
Aya Mahmoud ◽  
Hamada AbdElgawad ◽  
Badreldin A. Hamed ◽  
Gerrit T.S. Beemster ◽  
Nadia M. El-Shafey

Cadmium (Cd), a readily absorbed and translocated toxic heavy metal, inhibits plant growth, interrupts metabolic homeostasis and induces oxidative damage. Responses towards Cd-stress differ among plant cultivars, and the complex integrated relationships between Cd accumulation, detoxification mechanisms and antioxidant defenses still need to be unraveled. To this end, 12 Egyptian maize cultivars were grown under Cd-stress to test their Cd-stress tolerance. Out of these cultivars, tolerant (TWC360 and TWC321), moderately sensitive (TWC324) and sensitive (SC128) cultivars were selected, and we determined their response to Cd in terms of biomass, Cd accumulation and antioxidant defense system. The reduction in biomass was highly obvious in sensitive cultivars, while TWC360 and TWC321 showed high Cd-tolerance. The cultivar TWC321 showed lower Cd uptake concurrently with an enhanced antioxidant defense system. Interestingly, TWC360 accumulated more Cd in the shoot, accompanied with increased Cd detoxification and sequestration. A principal component analysis revealed a clear separation between the sensitive and tolerant cultivars with significance of the antioxidant defenses, including superoxide dismutase (SOD). To confirm the involvement of SOD in Cd-tolerance, we studied the effect of Cd-stress on a transgenic maize line (TG) constitutively overexpressing AtFeSOD gene in comparison to its wild type (WT). Compared to their WT, the TG plants showed less Cd accumulation and improved growth, physiology, antioxidant and detoxification systems. These results demonstrate the role of SOD in determining Cd-tolerance.

2021 ◽  
Vol 22 (21) ◽  
pp. 11704
Author(s):  
Quan Gu ◽  
Chuyan Wang ◽  
Qingqing Xiao ◽  
Ziping Chen ◽  
Yi Han

Cadmium (Cd) is one of the most injurious heavy metals, affecting plant growth and development. Melatonin (N-acetyl-5-methoxytryptamine) was discovered in plants in 1995, and it is since known to act as a multifunctional molecule to alleviate abiotic and biotic stresses, especially Cd stress. Endogenously triggered or exogenously applied melatonin re-establishes the redox homeostasis by the improvement of the antioxidant defense system. It can also affect the Cd transportation and sequestration by regulating the transcripts of genes related to the major metal transport system, as well as the increase in glutathione (GSH) and phytochelatins (PCs). Melatonin activates several downstream signals, such as nitric oxide (NO), hydrogen peroxide (H2O2), and salicylic acid (SA), which are required for plant Cd tolerance. Similar to the physiological functions of NO, hydrogen sulfide (H2S) is also involved in the abiotic stress-related processes in plants. Moreover, exogenous melatonin induces H2S generation in plants under salinity or heat stress. However, the involvement of H2S action in melatonin-induced Cd tolerance is still largely unknown. In this review, we summarize the progresses in various physiological and molecular mechanisms regulated by melatonin in plants under Cd stress. The complex interactions between melatonin and H2S in acquisition of Cd stress tolerance are also discussed.


2021 ◽  
Vol 15 (1) ◽  
pp. 37-48
Author(s):  
D. Yu. Hertsyk ◽  
◽  
M. V. Sabadashka ◽  
L. V. Kaprelyants ◽  
N. O. Sybirna ◽  
...  

Background. Diabetes mellitus is accompanied by oxidative-nitrative stress, which is caused both by an increased generation of the Reactive Oxygen Species and the Reactive Nitrogen Species under the conditions of this pathology and by the disorders of the antioxidant defense system, especially its enzymatic part. This leads alterations in the morpho-functional state of cells, organs, and the whole organism. Free radicals are involved in the destruction of pancreatic cells in type 1 diabetes mellitus, which leads to even greater inhibition of insulin secretion, worsening of the course of the disease and occurrence of diabetic complications. The complications of diabetes mellitus include often diagnosed cardiovascular diseases. Therefore, the use of treatments characterized not only by hypoglycemic properties for normalization of blood sugar level in diabetes mellitus, but also by antioxidant properties for normalization of oxidative/antioxidant balance of the organism in the studied pathology can be promising. Scientists pay a great attention to the study of substances with such properties, especially natural phenolic compounds of grape, which are also characterized by immunomodulatory properties. Materials and Methods. The study was performed on cardiac tissues of control rats, control animals treated with wine polyphenolic complex concentrate, animals with streptozotocin-induced diabetes mellitus and animals with experimental diabetes mellitus treated with a concentrate of wine polyphenolic complex. The activity of catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase were detected to examine the corrective effect of the concentrate of red wine natural polyphenolic comp­lex on the state of the enzymatic part of the antioxidant defense system. Results. The results have shown the normalization of activity of catalase, superoxide dismutase, and changes in the activity of enzymes of glutathione cycle after oral administration of polyphenolic complex concentrate for 14 days to rats with streptozo­tocin-induced diabetes mellitus. Conclusions. The results confirm a hypothesis about the antioxidant effect of the studied concentrate and the ability of natural polyphenolic complexes to serve as the basis for new drugs for treatment of diabetes-induced disorders.


Plants ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1575
Author(s):  
Muhammad Jawad Hassan ◽  
Muhammad Ali Raza ◽  
Sana Ur Rehman ◽  
Muhammad Ansar ◽  
Harun Gitari ◽  
...  

Heavy metal stress is a leading environmental issue reducing crop growth and productivity, particularly in arid and semi-arid agro-ecological zones. Cadmium (Cd), a non-redox heavy metal, can indirectly increase the production of reactive oxygen species (ROS), inducing cell death. A pot experiment was conducted to investigate the effects of different concentrations of Cd (0, 5, 25, 50, 100 µM) on physiological and biochemical parameters in two sorghum (Sorghum bicolor L.) cultivars: JS-2002 and Chakwal Sorghum. The results showed that various concentrations of Cd significantly increased the Cd uptake in both cultivars; however, the uptake was higher in JS-2002 compared to Chakwal Sorghum in leaf, stem and root. Regardless of the cultivars, there was a higher accumulation of the Cd in roots than in shoots. The Cd stress significantly reduced the growth and increased the electrolyte leakage (EL), hydrogen peroxide (H2O2) concentration and malondialdehyde (MDA) content in both cultivars, but the Chakwal Sorghum showed more pronounced oxidative damage than the JS-2002, as reflected by higher H2O2, MDA and EL. Moreover, Cd stress, particularly 50 µM and 100 µM, decreased the activity of different antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT). However, the JS-2002 exhibited higher SOD, POD and CAT activities than the Chakwal Sorghum under different Cd-levels. These findings revealed that JS-2002 had a stronger Cd enrichment capacity and also exhibited a better tolerance to Cd stress due to its efficient antioxidant defense system than Chakwal Sorghum. The present study provides the available information about Cd enrichment and tolerance in S. bicolor, which is used as an important agricultural crop for livestock feed in arid and semi-arid regions.


2015 ◽  
Vol 30 (6) ◽  
pp. 1465-1465 ◽  
Author(s):  
Juliana Lenzi ◽  
Andre Felipe Rodrigues ◽  
Adriana de Sousa Rós ◽  
Amanda Blanski de Castro ◽  
Daniela Delwing de Lima ◽  
...  

2004 ◽  
Vol 26 (3) ◽  
pp. 211-218 ◽  
Author(s):  
Işıl Öncel ◽  
Ender Yurdakulol ◽  
Yüksel Keleş ◽  
Latif Kurt ◽  
Atilla Yıldız

2004 ◽  
Vol 422 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Marcos S Dreon ◽  
Guillermo Schinella ◽  
Horacio Heras ◽  
Ricardo J Pollero

2020 ◽  
Vol 7 (4) ◽  
pp. 164-167
Author(s):  
Olga Kovalyova ◽  
Tamara Pasiieshvili

Background. Despite numerous studies, the pathogenesis of gastroesophageal reflux disease remains unclear. Aim of research: assessment the activity of antioxidant defense system in young patients with GERD based on expression of biomarker associated with mitochondrial function. Material and methods. The study included 45 patients with gastroesophageal reflux disease. The examined contingent was presented by students age from 18 to 25 years. 20 healthy persons were included as control group. Levels of manganese superoxide dismutase were determined in blood serum of study persons with enzyme immunoassays (ELISA, Elabscience, USA). Statistical data processing by the Statistica Basic Academic 13 for Windows En local was made. Results. Gastroesophageal reflux disease in young patients is characterized by significantly increasing of manganese superoxide dismutase as compare to control group (7.1700 ng/ml vs 4.4720 ng/ml respectively, p<0.01). Presence of erosion in esophagus mucous doesn't accompanied by significant changes of evaluated parameter as compare with non-erosion form of disease in patients. Conclusion. The elevation in young patients with GERD the biomarker of mitohondrial antioxidant defense system we may speculate as adaptive response contributing to non-specific citoprotection. Taking to account the publishing facts about dual role of manganese superoxide dismutase it is necessary to monitoring antioxidant enzyme in patients with gastroesophageal reflux disease for prediction of possible complications and outcome.


Sign in / Sign up

Export Citation Format

Share Document