scholarly journals Dietary Intake of Flavonoids and Carotenoids Is Associated with Anti-Depressive Symptoms: Epidemiological Study and In Silico—Mechanism Analysis

Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Seon-Joo Park ◽  
Varun Jaiswal ◽  
Hae-Jeung Lee

Flavonoids and carotenoids are bioactive compounds that have protective effects against depressive symptoms. Flavonoids and carotenoids are the two main types of antioxidant phytochemicals. This study investigated the association between flavonoid and carotenoid intake and depressive symptoms in middle-aged Korean females. We analyzed the mechanism of these associations using an in silico method. Depressive symptoms were screened using the Beck Depression Inventory-II (BDI-II), and flavonoid and carotenoid intake were assessed using a semi-quantitative food frequency questionnaire. Using a multivariate logistic regression model, we found that flavones, anthocyanins, individual phenolic compounds, lycopene, and zeaxanthin were negatively associated with depressive symptoms. In silico analysis showed that most flavonoids have high docking scores for monoamine oxidase A (MAOA) and monoamine oxidase B (MAOB), which are two important drug targets in depression. The results of the docking of brain-derived neurotrophic factor (BDNF) and carotenoids suggested the possibility of allosteric activation of BDNF by carotenoids. These results suggest that dietary flavonoids and carotenoids can be utilized in the treatment of depressive symptoms.

Author(s):  
Anjali Garg ◽  
Neelja Singhal ◽  
Manish Kumar

Abstract Mycobacterium avium subspecies paratuberculosis (MAP) exhibits ‘molecular mimicry’ with the human host resulting in several autoimmune diseases such as multiple sclerosis, type 1 diabetes mellitus (T1DM), Hashimoto’s thyroiditis, Crohn’s disease (CD), etc. The conventional therapy for autoimmune diseases includes immunosuppressants or immunomodulators that treat the symptoms rather than the etiology and/or causative mechanism(s). Eliminating MAP–the etiopathological agent might be a better strategy to treat MAP-associated autoimmune diseases. In this case study, we conducted a systematic in silico analysis to identify the metabolic chokepoints of MAP’s mimicry proteins and their interacting partners. The probable inhibitors of chokepoint proteins were identified using DrugBank. DrugBank molecules were stringently screened and molecular interactions were analyzed by molecular docking and ‘off-target’ binding. Thus, we identified 18 metabolic chokepoints of MAP mimicry proteins and 13 DrugBank molecules that could inhibit three chokepoint proteins viz. katG, rpoB and narH. On the basis of molecular interaction between drug and target proteins finally eight DrugBank molecules, viz. DB00609, DB00951, DB00615, DB01220, DB08638, DB08226, DB08266 and DB07349 were selected and are proposed for treatment of three MAP-associated autoimmune diseases namely, T1DM, CD and multiple sclerosis. Because these molecules are either approved by the Food and Drug Administration or these are experimental drugs that can be easily incorporated in clinical studies or tested in vitro. The proposed strategy may be used to repurpose drugs to treat autoimmune diseases induced by other pathogens.


2015 ◽  
Vol 84 (2) ◽  
pp. 81-84 ◽  
Author(s):  
Muthukumaran Sivashanmugam ◽  
Hemavathy Nagarajan ◽  
Umashankar Vetrivel ◽  
Gayathri Ramasubban ◽  
Kulandai Lily Therese ◽  
...  

2020 ◽  
Vol 7 ◽  
Author(s):  
Dilara Karaman ◽  
Kemal YELEKCI ◽  
Serkan ALTUNTAS

The research of ligand-protein interactions with in silico molecular modeling studies on the atomic level gives an opportunity to be understood the pharmacokinetic metabolism of anti-depressant drug candidates. Monoamine oxidase (MAO) enzymes are important targets for the treatment of depressive disorder. MAOs have two isoforms as MAO-A and MAO-B being responsible for catalyzing of neurological amines. In this study a new series of coumarin derivatives were designed for selective and reversible inhibition of MAO-A enzyme. 3rd, 5th and 7th positions were selected to be placed of five different side groups. Docking procedures of each ligand in M series of these novel 125 compounds were executed with 10 runs by using AutoDock4.2 software. Docking results were analyzed via Discovery Studio 3.1 (Biovia Inc.). The most promising compounds were M118 and M123 according to selectivity index, SI (MAO-B/MAO-A)=180 fold and 209 fold and Ki values 7.25 nM and 12.01 nM, respectively. Overall, the current study provided significant knowledge for the development of new anti-depressant drugs.


Sign in / Sign up

Export Citation Format

Share Document