Discovery of monoamine oxidase A inhibitory peptides from hairtail (Trichiurus japonicus) using in vitro simulated gastrointestinal digestion and in silico studies

2020 ◽  
Vol 101 ◽  
pp. 104032
Author(s):  
Xiaoxue Yang ◽  
Kai Wang ◽  
Qi Liu ◽  
Xuewu Zhang
2020 ◽  
Vol 21 (3) ◽  
pp. 1059 ◽  
Author(s):  
Ruidan Wang ◽  
Xin Lu ◽  
Qiang Sun ◽  
Jinhong Gao ◽  
Lin Ma ◽  
...  

The aim of this study was to isolate and identify angiotensin I-converting enzyme (ACE) inhibitory peptides from sesame protein through simulated gastrointestinal digestion in vitro, and to explore the underlying mechanisms by molecular docking. The sesame protein was enzymatically hydrolyzed by pepsin, trypsin, and α-chymotrypsin. The degree of hydrolysis (DH) and peptide yield increased with the increase of digest time. Moreover, ACE inhibitory activity was enhanced after digestion. The sesame protein digestive solution (SPDS) was purified by ultrafiltration through different molecular weight cut-off (MWCO) membranes and SPDS-VII (< 3 kDa) had the strongest ACE inhibition. SPDS-VII was further purified by NGC Quest™ 10 Plus Chromatography System and finally 11 peptides were identified by Nano UHPLC-ESI-MS/MS (nano ultra-high performance liquid chromatography-electrospray ionization mass spectrometry/mass spectrometry) from peak 4. The peptide GHIITVAR from 11S globulin displayed the strongest ACE inhibitory activity (IC50 = 3.60 ± 0.10 μM). Furthermore, the docking analysis revealed that the ACE inhibition of GHIITVAR was mainly attributed to forming very strong hydrogen bonds with the active sites of ACE. These results identify sesame protein as a rich source of ACE inhibitory peptides and further indicate that GHIITVAR has the potential for development of new functional foods.


Molecules ◽  
2020 ◽  
Vol 25 (11) ◽  
pp. 2678
Author(s):  
Ewelina Kozioł ◽  
Simon Vlad Luca ◽  
Hale Gamze Ağalar ◽  
Begüm Nurpelin Sağlık ◽  
Fatih Demirci ◽  
...  

Naturally occurring coumarins are a group of compounds with many documented central nervous system (CNS) activities. However, dihydrofuranocoumarins have been infrequently investigated for their bioactivities at CNS level. Within the frame of this study, an efficient liquid–liquid chromatography method was developed to rapidly isolate rutamarin from Ruta graveolens L. (Rutaceae) dichloromethane extract (DCM). The crude DCM (9.78 mg/mL) and rutamarin (6.17 M) were found to be effective inhibitors of human monoamine oxidase B (hMAO-B) with inhibition percentages of 89.98% and 95.26%, respectively. The inhibitory activity against human monoamine oxidase A (hMAO-A) for the DCM extract was almost the same (88.22%). However, for rutamarin, it significantly dropped to 25.15%. To examine the molecular interaction of rutamarin with hMAO- B, an in silico evaluation was implemented. A docking study was performed for the two enantiomers (R)-rutamarin and (S)-rutamarin. The (S)-rutamarin was found to bind stronger to the hMAO-B binging cavity.


Marine Drugs ◽  
2019 ◽  
Vol 17 (4) ◽  
pp. 204 ◽  
Author(s):  
Marco Garcia-Vaquero ◽  
Leticia Mora ◽  
Maria Hayes

A protein extract was generated from the macroalga Ulva lactuca, which was subsequently hydrolysed using the food-grade enzyme papain and angiotensin-converting Enzyme I and renin inhibitory peptides identified using a combination of enrichment strategies employing molecular weight cutoff filtration and mass spectrometry analysis. The generated hydrolysates with the most promising in vitro activity were further purified using preparative RP-HPLC and characterised. The 1 kDa hydrolysate (1 kDa-UFH), purified and collected by preparative RP-HPLC at minutes 41‒44 (Fr41‒44), displayed statistically higher ACE-I inhibitory activities ranging from 96.91% to 98.06%. A total of 48 novel peptides were identified from these four fractions by LC-MS/MS. A simulated gastrointestinal digestion of the identified peptide sequences was carried out using in silico enzyme cleavage simulation tools, resulting in 86 peptide sequences that were further assessed for their potential activity, toxicity and allergenicity using multiple predictive approaches. All the peptides obtained in this study were predicted to be non-toxic. However, 28 out of the 86 novel peptides released after the in silico gastrointestinal digestion were identified as potential allergens. The potential allergenicity of these peptides should be further explored to comply with the current labelling regulations in formulated food products containing U. lactuca protein hydrolysates.


2019 ◽  
Vol 27 (7) ◽  
pp. 1195-1210 ◽  
Author(s):  
Michał Załuski ◽  
Jakub Schabikowski ◽  
Miriam Schlenk ◽  
Agnieszka Olejarz-Maciej ◽  
Bartłomiej Kubas ◽  
...  

Nutrients ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 985 ◽  
Author(s):  
Angela Marseglia ◽  
Luca Dellafiora ◽  
Barbara Prandi ◽  
Veronica Lolli ◽  
Stefano Sforza ◽  
...  

In this study we investigated the oligopeptide pattern in fermented cocoa beans and derived products after simulated gastrointestinal digestion. Peptides in digested cocoa samples were identified based on the mass fragmentation and on the software analysis of vicilin and 21 KDa cocoa seed protein sequences, the most abundant cocoa proteins. Quantification was carried out by liquid chromatography/electrospray ionisation mass spectrometry (LC/ESI-MS) using an internal standard. Sixty five peptides were identified in the digested samples, including three pyroglutamyl derivatives. The in vitro angiotensin-converting enzyme (ACE)-inhibitory activity of cocoa digests were tested, demonstrating a high inhibition activity, especially for digestates of cocoa beans. The peptides identified were screened for their potential ACE inhibitory activity through an in silico approach, and about 20 di-, three- and tetra-peptides actually present in our samples were predicted as active. Two of the potentially active peptides were chemically synthesized and then assessed for their inhibitory activity by using the ACE in vitro assay. These peptides demonstrated an ACE inhibitory activity, however, that was too weak to explain alone the high activity of cocoa digestates, suggesting a synergic effect of all cocoa peptides. As a whole, results showed that an average chocolate portion (30 g) ensures an amount of peptides after digestion that, assuming complete absorption, could reach almost a complete inhibition of ACE.


2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


Sign in / Sign up

Export Citation Format

Share Document