scholarly journals Immunohistochemical Expression of Wilms’ Tumor 1 Protein in Human Tissues: From Ontogenesis to Neoplastic Tissues

2019 ◽  
Vol 10 (1) ◽  
pp. 40
Author(s):  
Lucia Salvatorelli ◽  
Giovanna Calabrese ◽  
Rosalba Parenti ◽  
Giada Maria Vecchio ◽  
Lidia Puzzo ◽  
...  

The human Wilms’ tumor gene (WT1) was originally isolated in a Wilms’ tumor of the kidney as a tumor suppressor gene. Numerous isoforms of WT1, by combination of alternative translational start sites, alternative RNA splicing and RNA editing, have been well documented. During human ontogenesis, according to the antibodies used, anti-C or N-terminus WT1 protein, nuclear expression can be frequently obtained in numerous tissues, including metanephric and mesonephric glomeruli, and mesothelial and sub-mesothelial cells, while cytoplasmic staining is usually found in developing smooth and skeletal cells, myocardium, glial cells, neuroblasts, adrenal cortical cells and the endothelial cells of blood vessels. WT1 has been originally described as a tumor suppressor gene in renal Wilms’ tumor, but more recent studies emphasized its potential oncogenic role in several neoplasia with a variable immunostaining pattern that can be exclusively nuclear, cytoplasmic or both, according to the antibodies used (anti-C or N-terminus WT1 protein). With the present review we focus on the immunohistochemical expression of WT1 in some tumors, emphasizing its potential diagnostic role and usefulness in differential diagnosis. In addition, we analyze the WT1 protein expression profile in human embryonal/fetal tissues in order to suggest a possible role in the development of organs and tissues and to establish whether expression in some tumors replicates that observed during the development of tissues from which these tumors arise.

2013 ◽  
Vol 305 (4) ◽  
pp. L322-L332 ◽  
Author(s):  
Elena Cano ◽  
Rita Carmona ◽  
Ramón Muñoz-Chápuli

Lungs develop from paired endodermal outgrowths surrounded by a mesodermal mesenchyme. Part of this mesenchyme arises from epithelial-mesenchymal transition of the mesothelium that lines the pulmonary buds. Previous studies have shown that this mesothelium-derived mesenchyme contributes to the smooth muscle of the pulmonary vessels, but its significance for lung morphogenesis and its developmental fate are still little known. We have studied this issue using the transgenic mouse model mWt1/IRES/GFP-Cre (Wt1cre) crossed with the Rosa26R-EYFP reporter mouse. In the developing lungs, Wt1, the Wilms' tumor suppressor gene, is specifically expressed in the embryonic mesothelium. In the embryos obtained from the crossbreeding, the Wt1-expressing cell lineage produces the yellow fluorescent protein (YFP), allowing for colocalization with differentiation markers. Wt1cre-YFP cells were very abundant from the origin of the lung buds to postnatal stages, contributing significantly to pulmonary endothelial and smooth muscle cells, bronchial musculature, tracheal and bronchial cartilage, as well as CD34+ fibroblast-like interstitial cells. Thus Wt1cre-YFP mesenchymal cells show the very same differentiation potential as the splanchnopleural mesenchyme surrounding the lung buds. FSP1+ fibroblast-like cells were always YFP−; they expressed the common leukocyte antigen CD45 and were apparently recruited from circulating progenitors. We have also found defects in pulmonary development in Wt1−/− embryos, which showed abnormally fused lung lobes, round-shaped and reduced pleural cavities, and diaphragmatic hernia. Our results suggest a novel role for the embryonic mesothelium-derived cells in lung morphogenesis and involve the Wilms' tumor suppressor gene in the development of this organ.


1993 ◽  
Vol 11 (4) ◽  
pp. 393-399 ◽  
Author(s):  
Wendy Bruening ◽  
Philippe Gros ◽  
Takaaki Sato ◽  
Jerry Stanimir ◽  
Yusuke Nakamura ◽  
...  

2003 ◽  
Vol 53 (4) ◽  
pp. 214-220 ◽  
Author(s):  
Rie Shibata ◽  
Ayako Takata ◽  
Akinori Hashiguchi ◽  
Akihiro Umezawa ◽  
Taketo Yamada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document