scholarly journals Improved Performance of Li-ion Polymer Batteries Through Improved Pulse Charging Algorithm

2020 ◽  
Vol 10 (3) ◽  
pp. 895 ◽  
Author(s):  
Judy M. Amanor-Boadu ◽  
Anthony Guiseppi-Elie

Pulse charging of lithium-ion polymer batteries (LiPo), when properly implemented, offers increased battery charge and energy efficiencies and improved safety for electronic device consumers. Investigations of the combined impact of pulse charge duty cycle and frequency of the pulse charge current on the performance of lithium-ion polymer (LiPo) batteries used the Taguchi orthogonal arrays (OA) to identify optimal and robust pulse charging parameters that maximize battery charge and energy efficiencies while decreasing charge time. These were confirmed by direct comparison with the commonly applied benchmark constant current-constant voltage (CC–CV) charging method. The operation of a pulse charger using identified optimal parameters resulted in charge time reduction by 49% and increased charge and energy efficiencies of 2% and 12% respectively. Furthermore, when pulse charge current factors, such as frequency and duty cycle were considered, it was found that the duty cycle of the pulse charge current had the most impact on the cycle life of the LiPo battery and that the cycle life could be increased by as much as 100 cycles. Finally, the charging temperature was found to have the most statistically significant impact on the temporarily evolving LiPo battery impedance, a measure of its degradation.

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 2162 ◽  
Author(s):  
J. Amanor-Boadu ◽  
A. Guiseppi-Elie ◽  
E. Sánchez-Sinencio

The pulse charging algorithm is seen as a promising battery charging technique to satisfy the needs of electronic device consumers to have fast charging and increased battery charge and energy efficiencies. However, to get the benefits of pulse charging, the pulse charge current parameters have to be chosen carefully to ensure optimal battery performance and also extend the life cycle of the battery. The impact of pulse charge current factors on the life cycle and battery characteristics are seldom investigated. This paper seeks to evaluate the impact of pulse charge current factors, such as frequency and duty cycle, on the life cycle and impedance parameters of lithium-ion polymer batteries (LiPo) while using a design of experiments approach, Taguchi orthogonal arrays. The results are compared with the benchmark constant current-constant voltage (CC-CV) charging algorithm and it is observed that by using a pulse charger at optimal parameters, the cycle life of a LiPo battery can be increased by as much as 100 cycles. It is also determined that the duty cycle of the pulse charge current has the most impact on the cycle life of the battery. The battery impedance characteristics were also examined by using non-destructive techniques, such as electrochemical impedance spectroscopy, and it was determined that the ambient temperature at which the battery was charged had the most effect on the battery impedance parameters.


Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 227 ◽  
Author(s):  
Bongwoo Kwak ◽  
Myungbok Kim ◽  
Jonghoon Kim

In this paper, an add-on type pulse charger is proposed to shorten the charging time of a lithium ion battery. To evaluate the performance of the proposed pulse charge method, an add-on type pulse charger prototype is designed and implemented. Pulse charging is applied to 18650 cylindrical lithium ion battery packs with 10 series and 2 parallel structures. The proposed pulse charger is controlled by pulse duty, frequency and magnitude. Various experimental conditions are applied to optimize the charging parameters of the pulse charging technique. Battery charging data are analyzed according to the current magnitude and duty at 500 Hz and 1000 Hz and 2000 Hz frequency conditions. The proposed system is similar to the charging speed of the constant current method under new battery conditions. However, it was confirmed that as the battery performance is degraded, the charging speed due to pulse charging increases. Thus, in applications where battery charging/discharging occurs frequently, the proposed pulse charger has the advantage of fast charging in the long run over conventional constant current (CC) chargers.


2014 ◽  
Vol 8 (1) ◽  
pp. 229-233
Author(s):  
Lun-qiong Chen ◽  
Bei Li ◽  
Lin Yu

Based on pulse fast charge of the lead acid battery, this paper designed a kind of intelligent battery charger, including mainly a minimum system of 16 bit MCU as intelligent center, the constant resistance discharge unit to complete SOC prediction and duty cycle of the pulse charging waveform, the voltage-current-temperature measurement unit, pulse charging control unit. The duty cycle of this charger agreed with SOC of the battery, then using short floating charge in the later stage, thus greatly optimizing the pulse charging mode. Finally, compared with the conventional constant voltage and constant current charging, the charger greatly reduced the charging time.


2019 ◽  
Author(s):  
Yu Liu ◽  
Meng Xu ◽  
Zhibang Xu ◽  
Xia Wang

Abstract To fast charge lithium ion batteries while achieving higher capacity and limiting temperature rise, a constant current plus pulse current (CCPC) charging protocol is proposed. Parametric study for the CCPC design parameters including the current level, cut-off voltage, and pulse duration is performed experimentally. Taguchi method is adopted to search an optimal charging pattern. Experimental results show that the pulse charge current has the greatest effect on the charging time and temperature rise, while the pulse discharge current has the least effect on both. The optimal pattern from the Taguchi method is able to charge the cylindrical cell 15.6% faster than the traditional constant current constant voltage (CCCV) charging protocol. An electrochemical and thermal coupled model is developed to reveal the working principle of the CCPC. The modeling results show that the CCPC charging protocol reduces the concentration polarization with more uniform lithium ion distribution than the CCCV, thus accelerating the charging process.


Author(s):  
Paul C.-P. Chao ◽  
W. D. Chen ◽  
R. H. Wu

The market of electronic products such as mobile phones and portable devices grows rapidly while the demand of lithium battery for fast charge, long duration, and long life cycle increases significantly as well. There are several charge methods for lithium battery, such as constant current (CC)/constant voltage (CV) charge [1], pulse charge [2] and reflex charge [3], etc. In general, a flyback converter has been widely adopted as the front-end converter of battery charger due to its low-cost, wide power range, and galvanic isolation between input and output stage. The battery charge controller with flyback converter has been developed in digital control with opto-coupler feedback [4]–[6]. The conventional flyback converter with CC or CV applications always requires two sensed ADC channels for regulating [7]–[9]. An improved control method is proposed in this study to achieve CC/CV by only one ADC channel. This study presents a battery charge mechanism with a flyback converter and associated trickle charge method for the temperature compensation. The PSR is adopted for switching the charge modes within trickle current (TC), constant current (CC) and constant voltage (CV). The TC charging method is used to avoid the rapid increase in the temperature of the battery which is based on the characteristics of the internal resistance of the battery [10]. The proposed system circuit contains two stages in topology. The first stage is a front-end flyback converter which operates in DC-DC discontinuous current mode (DCM) by using PSR to sense the output voltage from auxiliary winding. It is adopted to replace the opto-coupler for avoiding temperature limitation for operations and reducing cost. The software Powersim is used to simulate the proposed flyback converter and PSR method. The second stage is the digital feedback loop, which processes the controlled signal by a digital processor (DSP) TMS320F2812. The experimental results were compared with general CC/CV method. The results show favorable performance of the propose charging method.


Author(s):  
Zhiguo Hou ◽  
Lei Zhang ◽  
Jianwu Chen ◽  
Yali Xiong ◽  
Xueqian Zhang ◽  
...  

Zn2+ added into electrolyte can effectively suppress H2 evolution. Therefore, a LiMn2O4/NaTi2(PO4)3 full cell exhibits enhanced overcharging performance and excellent cycling stability up to 10 000 cycles.


Author(s):  
Jing Zhang ◽  
Yong-Fan Zhang ◽  
Yi Li ◽  
Yu-Rong Ren ◽  
Shu-Ping Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document