scholarly journals Using Fast Frequency Hopping Technique to Improve Reliability of Underwater Communication System

2020 ◽  
Vol 10 (3) ◽  
pp. 1172 ◽  
Author(s):  
Jan H. Schmidt

Acoustic underwater communication systems designed to work reliably in shallow coastal waters must overcome major limitations such as multipath propagation and the Doppler effect. These restrictions are the reason for the complexity of receivers being built, whose task is to decode a symbol on the basis of the received signal. Additional complications are caused by the low propagation speed of the acoustic wave in the water and the relatively narrow bandwidth. Despite the continuous development of communication systems using coherent modulations, they are still not as reliable as is desirable for reliable data transmission applications. This article presents an acoustic underwater communication system that uses one of the varieties of the spread spectrum technique i.e., the fast frequency hopping technique (FFH). This technique takes advantage of binary frequency-shift keying (BFSK) with an incoherent detection method to ensure the implementation of a system whose main priority is reliable data transmission and secondary priority is the transmission rate. The compromised choice of parameters consisted of the selection between the narrow band of the hydroacoustic transducer and the maximum number of carrier frequency hops, which results from the need to take into account the effects of the Doppler effect. In turn, the number of hops and the symbol duration were selected adequately for the occurrence of multipath propagations of an acoustic wave. In addition, this article describes experimental communication tests carried out using a laboratory model of the FFH-BFSK data transmission system in the shallow water environment of Lake Wdzydze/Poland. The test results obtained for three channels of different lengths are discussed.

2012 ◽  
Vol 562-564 ◽  
pp. 1678-1681
Author(s):  
Yan Zhang

The paper introduces the project component of power carrier communication mode and communication system based on the spread spectrum communication theory. The methods of data transmission and spread spectrum technology applying in the coal mine communication systems are given. Paper analyzes the characteristics of signal and the feasibility of technique solutions for mine communications. The design possesses the strong practicability and operability.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Rie Saotome ◽  
Tran Minh Hai ◽  
Yasuto Matsuda ◽  
Taisaku Suzuki ◽  
Tomohisa Wada

In order to explore marine natural resources using remote robotic sensor or to enable rapid information exchange between ROV (remotely operated vehicles), AUV (autonomous underwater vehicle), divers, and ships, ultrasonic underwater communication systems are used. However, if the communication system is applied to rich living creature marine environment such as shallow sea, it suffers from generated Impulsive Noise so-called Shrimp Noise, which is randomly generated in time domain and seriously degrades communication performance in underwater acoustic network. With the purpose of supporting high performance underwater communication, a robust digital communication method for Impulsive Noise environments is necessary. In this paper, we propose OFDM ultrasonic communication system with diversity receiver. The main feature of the receiver is a newly proposed Frequency Domain Diversity Combined Impulsive Noise Canceller. The OFDM receiver utilizes 20–28 KHz ultrasonic channel and subcarrier spacing of 46.875 Hz (MODE3) and 93.750 Hz (MODE2) OFDM modulations. In addition, the paper shows Impulsive Noise distribution data measured at a fishing port in Okinawa and at a barge in Shizuoka prefectures and then proposed diversity OFDM transceivers architecture and experimental results are described. By the proposed Impulsive Noise Canceller, frame bit error rate has been decreased by 20–30%.


2021 ◽  
Vol 11 (8) ◽  
pp. 3698
Author(s):  
Timur Karimov ◽  
Vyacheslav Rybin ◽  
Georgii Kolev ◽  
Ekaterina Rodionova ◽  
Denis Butusov

Communication systems based on chaotic synchronization are gaining interest in the area of secure and covert data transmission. In this paper, a novel digital communication technique based on a coherent chaotic data transmission approach is proposed. In general, this technique resembles the well-known approach based on the modulation of nonlinearity parameters. The key idea of this study is to modulate a signal by varying not the system parameter but the symmetry coefficient in discrete chaotic models obtained by the special numerical integration method. For this purpose, the self-adjoint semi-implicit integration method of order 2 is used to obtain discrete master and slave models of the considered chaotic oscillator. The experimental results explicitly show that, like during parameter modulation, transmitting and receiving oscillators may completely synchronize only if the symmetry coefficients are equal in both systems. The architecture of the communication system based on the proposed modulation is presented. The practical applicability of the approach is confirmed by transmitting a test binary sequence between the transmitter and receiver models and preliminary benchmarking of the obtained communication system. Since the symmetry coefficient modulation does not significantly impact the chaotic behavior of the transmitting digital system, its better suitability for covert messaging was experimentally confirmed by comparing it with the parameter modulation technique.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
A.A. Paramonov ◽  
◽  
Van Zung Hoang ◽  

The article deals with an algorithm for noncoherent reception of signals with Differential Quadrature Phase Shift Keying (DQPSK) using their weight processing for radio communication systems (RCS) with Frequency-hopping spread spectrum (FHSS) under Partial-band jamming noise (concentrated in the interference spectrum). Numerical calculations of bit/symbol error probability in the reception of DQPSK signals with a symbol-by-symbol frequency hopping are presented, as well as the results of modelling the considered reception algorithm for a radio communication system with an intra-symbol frequency hopping to study the noise immunity of receiving a DPQSK signal in the considered mode. It is shown that for not too large signal-to-jamming ratios when only a part of the operating frequencies is clogged by this noise, the noncoherent reception algorithm with weight processing provides higher noise immunity than the symbol-by-symbol frequency-hopping algorithm.


Sign in / Sign up

Export Citation Format

Share Document