scholarly journals Edge Computing-Based Self-Organized Device Network for Awareness Activities of Daily Living in the Home

2020 ◽  
Vol 10 (7) ◽  
pp. 2475
Author(s):  
Seong Su Keum ◽  
Yu Jin Park ◽  
Soon Ju Kang

Activities of daily living (ADL) are important indicators for awareness of brain health in the elderly, and hospitals use ADL as a standard test for diagnosing chronic brain diseases such as dementia. However, since it is difficult to judge real-life ADL in hospitals, doctors typically predict ADL ability through interviews with patients or accompanying caregivers. Recently, many studies have attempted to diagnose accurate brain health by collecting and analyzing the real-life ADL of patients in their living environments. However, most of these were conducted by constructing and implementing expensive smart homes with the concept of centralized computing, and ADL data were collected from simple data about patients’ home appliance usage and the surrounding environment. Despite the high cost of building a smart home, the collected ADL data are inadequate for predicting accurate brain health. In this study, we developed and used three types of portable devices (wearable, tag, and stationary) that can be easily installed and operated in typical existing houses. We propose a self-organized device network structure based on edge computing that can perform user perception, location perception, and behavioral perception simultaneously. This approach enables us to collect user activity data, analyze ADL in real-time to determine if the user’s behavior was successful or abnormal, and record the physical ability of the user to move between fixed spaces. The characteristics of this proposed system enable us to distinguish patients from other family members and provide real-time notifications after a forgetful or mistaken action. We implemented devices that constitute the edge network of the smart home scenario and evaluated the performance of this system to verify its usefulness.

Author(s):  
Lee-Nam Kwon ◽  
Dong-Hun Yang ◽  
Myung-Gwon Hwang ◽  
Soo-Jin Lim ◽  
Young-Kuk Kim ◽  
...  

With the global trend toward an aging population, the increasing number of dementia patients and elderly living alone has emerged as a serious social issue in South Korea. The assessment of activities of daily living (ADL) is essential for diagnosing dementia. However, since the assessment is based on the ADL questionnaire, it relies on subjective judgment and lacks objectivity. Seven healthy seniors and six with early-stage dementia participated in the study to obtain ADL data. The derived ADL features were generated by smart home sensors. Statistical methods and machine learning techniques were employed to develop a model for auto-classifying the normal controls and early-stage dementia patients. The proposed approach verified the developed model as an objective ADL evaluation tool for the diagnosis of dementia. A random forest algorithm was used to compare a personalized model and a non-personalized model. The comparison result verified that the accuracy (91.20%) of the personalized model was higher than that (84.54%) of the non-personalized model. This indicates that the cognitive ability-based personalization showed encouraging performance in the classification of normal control and early-stage dementia and it is expected that the findings of this study will serve as important basic data for the objective diagnosis of dementia.


2019 ◽  
Vol 15 (11) ◽  
pp. 155014771988561
Author(s):  
Tao Xu ◽  
Wei Sun ◽  
Shaowei Lu ◽  
Ke-ming Ma ◽  
Xiaoqiang Wang

The accidental fall is the major risk for elderly especially under unsupervised states. It is necessary to real-time monitor fall postures for elderly. This paper proposes the fall posture identifying scheme with wearable sensors including MPU6050 and flexible graphene/rubber. MPU6050 is located at the waist to monitor the attitude of the body with triaxial accelerometer and gyroscope. The graphene/rubber sensors are located at the knees to monitor the moving actions of the legs. A real-time fall postures identifying algorithm is proposed by the integration of triaxial accelerometer, tilt angles, and the bending angles from the graphene/rubber sensors. A volunteer is engaged to emulate elderly physical behaviors in performing four activities of daily living and six fall postures. Four basic fall down postures can be identified with MPU6050. Integrated with graphene/rubber sensors, two more fall postures are correctly identified by the proposed scheme. Test results show that the accuracy for activities of daily living detection is 93.5% and that for fall posture identifying is 90%. After the fall postures are identified, the proposed system transmits the fall posture to the smart phone carried by the elderly via Bluetooth. Finally, the posture and location are transmitted to the specified mobile phone by short message.


2013 ◽  
Vol 53 (1) ◽  
pp. 3 ◽  
Author(s):  
Patrick Anselme ◽  
Martine Poncelet ◽  
Sharon Bouwens ◽  
Stephanie Knips ◽  
Françoise Lekeu ◽  
...  

Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5674
Author(s):  
José Manuel Negrete Ramírez ◽  
Philippe Roose ◽  
Marc Dalmau ◽  
Yudith Cardinale ◽  
Edgar Silva

In this paper, we propose a framework for studying the AGGIR (Autonomie Gérontologique et Groupe Iso Ressources—Autonomy Gerontology Iso-Resources Groups) grid model, with the aim of assessing the level of independence of elderly people in accordance with their capabilities of performing daily activities as well as interacting with their environments. In order to model the Activities of Daily Living (ADL), we extend a previously proposed Domain Specific Language (DSL), by defining new operators to deal with constraints related to time and location of activities and event recognition. The proposed framework aims at providing an analysis tool regarding the performance of elderly/disabled people within a home environment by means of data recovered from sensors using a smart-home simulator environment. We perform an evaluation of our framework in several scenarios, considering five of the AGGIR variables (i.e., feeding, dressing, toileting, elimination, and transfers) as well as health-care devices for tracking the occurrence of elderly activities. The results demonstrate the accuracy of the proposed framework for managing the tracked records correctly and, thus, generate the appropriate event information related to the ADL.


2016 ◽  
Vol 11 (2) ◽  
pp. 5
Author(s):  
Myungjoon Lim ◽  
Kyung-Sun Pyo ◽  
KuemJu Lee ◽  
Jiyoung Park ◽  
Hyun Choi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document