scholarly journals Decision of Water Quality Measurement Locations for the Identification of Water Quality Problems under Emergency Link Pipe Operation

2020 ◽  
Vol 10 (8) ◽  
pp. 2707 ◽  
Author(s):  
Chan Wook Lee ◽  
Do Guen Yoo

This study suggests a methodology for the decision of water quality measurement locations in order to identify water quality problems within a pipe network system under abnormal conditions. A water supply system conversion due to the occurrence of tank or pump problems between water supply zones was set as a possible abnormal scenario and the water flow direction sensitivity of the pipeline was quantified to estimate the water quality monitoring priority. The proposed methodology was applied to a new city, A, in South Korea, and the results are analyzed in detail and presented. The proposed methodology can be used as a method to select water quality monitoring points when establishing an operation plan for emergency link pipes. It is also expected that it can be applied in the evaluation of the adequacy of the previously established emergency link pipe operation plan.

2011 ◽  
Vol 695 ◽  
pp. 606-609
Author(s):  
Pill Jae Kwak ◽  
Seog Ku Kim ◽  
Sang Leen Yun ◽  
Sung Won Kang ◽  
Hyun Dong Lee ◽  
...  

The water quality measurement device that we developed measures pH, water temperature, conductivity, dissolved oxygen, turbidity and nitrate. And it measures all parameters simultaneously. The water resistant and screw packing technology also applied for improved mechanical reliability during water quality monitoring. A comparison between the performances of major company products (YSI, Hydrolab etc.) and this device don't provide a stark contrast. This device was verified through the KOREA’s Environmental Examination Methods. This device is offered reliable and cost-effective water quality monitoring solutions. Upgrades will be available and will include the technologies that are self-cleaning optical sensors with integrated wipers remove biofouling and maintain high data accuracy and optimal power management and built-in battery compartment extends in situ monitoring periods.


2011 ◽  
Vol 695 ◽  
pp. 610-613
Author(s):  
Pill Jae Kwak ◽  
Seog Ku Kim ◽  
Sang Leen Yun ◽  
Sung Won Kang ◽  
Hyun Dong Lee ◽  
...  

Waternode station is a floating composite water quality monitoring device. The waternode station houses the multiple water quality measurement devices, control panel for wireless communication and solar cells for applying electric power. The floating devices are classified into general model with vertical dropping system and river model without vertical dropping system. The water quality measurement device measures pH, water temperature, conductivity, dissolved oxygen, turbidity and nitrate. And it measures all parameters simultaneously. The control panel is used for IP-USN system. USN (Ubiquitous Sensor Network) is a network system by water quality measurement devices. IP-USN is a USN system that identifies particular sensor connected to the internet. The data information is transferred by wireless modem based on TFB (Triple Frequency Band). Field application results showed that the waternode station is a reliable and cost-effective water quality monitoring solutions.


Author(s):  
Yu.A. Novikova ◽  
I.O. Myasnikov ◽  
A.A. Kovshov ◽  
N.A. Tikhonova ◽  
N.S. Bashketova

Summary. Introduction: Drinking water is one of the most important environmental factors sustaining life and determining human health. The goal of the Russian Federal Clean Water Project is to improve drinking water quality through upgrading of water treatment and supply systems using advanced technologies, including those developed by the military-industrial complex. The most informative and reliable sources of information for assessing drinking water quality are the results of systematic laboratory testing obtained within the framework of socio-hygienic monitoring (SGM) and production control carried out by water supply organizations. The objective of our study was to formulate approaches to organizing quality monitoring programs for centralized cold water supply systems. Materials and methods: We reviewed programs and results of drinking water quality laboratory tests performed by Rospotrebnadzor bodies and institutions within the framework of SGM in 2017–2018. Results: We established that drinking water quality monitoring in the constituent entities of the Russian Federation differs significantly in the number of monitoring points (566 in the Krasnoyarsk Krai vs 10 in Sevastopol) and measured indicators, especially sanitary and chemical ones (53 inorganic and organic substances in the Kemerovo Region vs one indicator in the Amur Region). Discussion: For a more complete and objective assessment of drinking water quality in centralized cold water supply systems, monitoring points should be organized at all stages of water supply with account for the coverage of the maximum number of people supplied with water from a particular network. Thus, the number of points in the distribution network should depend, inter alia, on the size of population served. In urban settlements with up to 10,000 inhabitants, for example, at least 4 points should be organized while in the cities with more than 3,000,000 inhabitants at least 80 points are necessary. We developed minimum mandatory lists of indicators and approaches to selecting priority indices to be monitored at all stages of drinking water supply.


1998 ◽  
Vol 38 (6) ◽  
pp. 201-208 ◽  
Author(s):  
D. J. Smith ◽  
S. Crymble

Increasing demand for limited water resources within the Midlands of England resulted in a lower quality river being considered for water supply in an area of high urban and rural population. A comprehensive water quality monitoring programme was undertaken on the river to compare its quality with other sources used for water supply. Concurrent with the monitoring programme a series of laboratory scale trials began to assess how the river water could be treated, and the costs involved. A major consideration was the need to provide treated water by the summer of 1997, which precluded a complete new water treatment process from being designed. The paper outlines the results from the monitoring programme, including some of the problem parameters such as pesticides at over 10 ug/l, and how some of the sources of these pollutants were identified. It also describes the treatment trials and explains how a water treatment process was developed which utilises disused gravel workings to provide bankside storage and a combination of powdered and granular activated carbon to remove organic pollutants.


Author(s):  
Balasubramanian Esakki ◽  
Surendar Ganesan ◽  
Silambarasan Mathiyazhagan ◽  
G. R. Kanagachidambaresan ◽  
Bhuvaneshwaran Gnanasekaran ◽  
...  

Unmanned Aerial Vehicles (UAVs) have gained significant attention in recent times due to their suitability to a wide variety of civil, military and societal missions. Development of an unmanned amphibious vehicle integrating the features of a multi-rotor UAV and a hovercraft is focus of the present study. Components and subsystems of the amphibious vehicle are developed with due consideration on aerodynamic, structural and environmental aspects. Finite element analysis (FEA) on static thrust conditions and skirt pressure are performed to evaluate the strength of structure. For diverse wind conditions and angles of attack (AOA), computational fluid dynamic (CFD) analysis is carried out to assess the effect of drag and suitable design modification is suggested. A prototype is built with a 7 kg payload capacity and successfully tested for stable operations in flight and water-borne modes. Internet of Things (IoT) based water quality measurement is performed in a typical lake and water quality is measured using pH, dissolved oxygen (DO), turbidity and electrical conductivity (EC) sensors. The developed vehicle is expected to meet functional requirements of disaster missions catering to the water quality monitoring of large water bodies.


Sign in / Sign up

Export Citation Format

Share Document