scholarly journals Study on Penetration Sensing Method Based on Pool Oscillation and Arc Voltage during Pulsed GMAW

2020 ◽  
Vol 10 (8) ◽  
pp. 2735
Author(s):  
Tao Chen ◽  
Songbai Xue ◽  
Peizhuo Zhai ◽  
Bo Wang ◽  
Weimin Long

The internal relations among the oscillation characteristics of the weld pool, the voltage signal curve and the penetration status of the weld joint in pulsed gas metal arc welding were investigated by using high-speed camera and image analysis system to extract characteristics of weld pool oscillation. The results show that the amplitude of weld pool oscillation decreased with decreasing weld penetration. An abrupt change occurred in the frequency components and amplitude of weld pool oscillation, accompanying the transition from partial to full penetration. The voltage signal curve lost the oscillation frequency characteristic of the pool, due to the curvature of the weld pool surface. While similar to the oscillation amplitude, the fluctuation of the voltage signal caused by the weld pool oscillation reflected the penetration of the weld pool. The abrupt transition in the fluctuation amplitude of the voltage signal in the base duration from partial penetration to full penetration may be used to sense the penetration of the weld pool in real time.

Author(s):  
XiaoJi Ma ◽  
YuMing Zhang

A system has been developed to measure the three-dimensional weld pool surface geometry in the gas metal arc welding (GMAW) process. It utilizes the specular nature of the weld pool surface by projecting a five-line laser pattern onto the surface and imaging its reflection. Specifically, the laser reflection is intercepted by an imaging plane and captured using a high speed camera. The reflected pattern is used to reconstruct the weld pool surface based on the law of reflection. Two reconstruction algorithms, referred to as center-points reconstruction and piece-wise weld pool surface reconstruction algorithm, are applied to sequentially reconstruct the weld pool height and three-dimensional surface geometry. Reconstructions has been conducted using simulated weld pool surface to provide a method to compare the reconstruction result with a known surface and evaluate the reconstruction accuracy. It is found that the proposed method is capable of reconstructing weld pool surface with acceptable accuracy. The height error of reconstructed center-points is less than 0.1 mm and the error of estimated weld pool boundary is less than 10%. Reconstruction results from images captured in welding experiments are also demonstrated.


Author(s):  
ZhenZhou Wang ◽  
YuMing Zhang ◽  
XiaoJi Ma

The reflection of projected laser lines may be used to determine the three-dimensional geometry of the reflecting weld pool surface. However, for gas metal arc welding (GMAW), the transfer of the droplets into the weld pool makes the weld pool surface highly dynamic and fluctuating. The position and geometry of the local reflecting surface, which intercepts and reflects the projected laser changes rapidly. As a result, the reflection rays change their trajectories rapidly. The contrast of laser reflection with the background is much reduced and methods are needed to extract laser reflection from low contrast images. To this end, an image quality measurement method is proposed based on the number of the edge points to determine if an image may be further processed. The image to be processed is then modeled as a superposition of the laser reflection and arc radiation background. Methods have been proposed to remove the uneven distribution of the arc radiation background from the image, such that a global threshold is possible to segment the laser reflection lines. The set of the laser line points are then clustered to form separate laser lines. These laser lines are then modeled and the parameters in the models are used to validate each modeled line. Processing results verified the effectiveness of the proposed methods/algorithms in providing laser lines from low contrast images that are formed by laser reflection from a high dynamic gas metal arc weld pool surface.


2020 ◽  
Vol 99 (05) ◽  
pp. 146s-155s
Author(s):  
DONGSHENG WU ◽  
◽  
SHINICHI TASHIRO ◽  
ZIANG WU ◽  
MANABU TANAKA ◽  
...  

A hybrid welding technique formed by combining keyhole plasma arc welding (KPAW) and pulsed gas metal arc welding (GMAW-P) is characterized by the complex interactions of the arc, droplet, keyhole, and weld pool. With the help of a high-speed video camera, zirconia particles, and a thermal camera, the complex interactive phenomena of the hybrid KPAW–GMAW-P process was analyzed. Owing to the formation of a direct-current path between the KPAW cathode (tungsten electrode) and the GMAW anode (welding wire), the ionized plasma arc was extended to the GMA side, causing an expansion of the GMA. The current at the GMAW droplet was diverged; thus, the Lorentz force promoted a more stable one pulse one droplet metal transfer mode compared with that of GMAW-P. The strong backward flow from the keyhole was suppressed because of the pull-push flow pattern on the top surface of the weld pool be-tween the two arcs. As the heat and molten metal in the weld pool were transported from the region near the GMA (high temperature) to the region near the plasma arc (low temperature), the weld pool temperature decreased.


Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 754
Author(s):  
Tao Chen ◽  
Songbai Xue ◽  
Peng Zhang ◽  
Bo Wang ◽  
Peizhuo Zhai ◽  
...  

The influence of heat and droplet transfer into weld pool dynamic behavior and weld metal microstructure in double-pulsed gas metal arc welding (DP-GMAW) was investigated by the self-designed high-speed welding photography system. The heat input, the arc pressure, the droplet momentum and impingement pressure were measured and calculated. It was found that the arc pressure is far less than the droplet impingement pressure. The heat input and droplet impingement pressure per unit time acting on weld pool were proportional to the current pulse frequency, which fluctuated with thermal pulse. The size and oscillation amplitude of the weld pool had noticeable periodic changes synchronized with the process of heat input and droplet impingement. Compared to the microstructure of pulsed gas metal arc welding (P-GMAW) weld metal, that of DP-GMAW weld metal was significantly refined. High oscillation amplitude assisted the enhancement of weld pool convection, which leads to more constitutional supercooling. The heat input and shear force during the peak of thermal pulse causing dendrite fragmentation which provided sufficient crystal nucleus for the growth of equiaxed grains and the possibility of grain refinement. The effects of current parameters on welding behavior and weld metal grain size are investigated for further understanding of DP-GMAW.


2013 ◽  
Vol 718-720 ◽  
pp. 202-208 ◽  
Author(s):  
Mao Ai Chen ◽  
Yuan Ning Jiang ◽  
Chuan Song Wu

With high-speed welding inverter and precisely controlling the welding current with arc-bridge state, advanced pulse current waveforms can be produced to optimize the transfer characteristics of short circuiting transfer welding. In this paper, the images of droplet/wire, and the transient data of welding current and arc voltage were simultaneously recorded to study the influence of peak arcing current, background arcing current and tail-out time on the stability of short circuiting transfer process. It was found that maximum short circuiting transfer stability is reached under specific welding conditions. Any deviation from these conditions will cause abnormal rises in arc voltage indicating instantaneous arc extinguishing and greater spatter. Optimal welding conditions were obtained to achieve the maximum stability of short circuiting metal transfer process.


Author(s):  
Y Wu ◽  
R Kovacevic

Gas metal arc welding has been generally accepted as the preferred joining technique due to its advantages in high production and automated welding applications. Separate control of arc energy and arc force is an essential way to improve the welding quality and to obtain the projected metal transfer mode. One of the most effective methods for obtaining separate control is to exert an additional force on the metal transfer process. In this paper, the droplet transfer process with additional mechanical force is studied. The welding system is composed of an oscillating wire feeder. The images of molten metal droplets are captured by a high-speed digital camera, and both the macroscopic appearance and the cross-sectional profiles of the weld beads are analysed. It is shown that the droplet transfer process can be significantly improved by wire electrode oscillation, and a projected spray transfer mode can be established at much lower currents. By increasing the oscillation frequency, the droplet transfer rate increases while the droplet size decreases. In addition, the improvement in the droplet transfer process with wire oscillation leads to an enhancement of the surface quality and a modification of the geometry of the weld beads that could be of importance for overlay cladding and rapid prototyping based on deposition by welding.


Sign in / Sign up

Export Citation Format

Share Document