scholarly journals Investigation on the Dynamic Behavior of Weld Pool and Weld Microstructure during DP-GMAW for Austenitic Stainless Steel

Metals ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 754
Author(s):  
Tao Chen ◽  
Songbai Xue ◽  
Peng Zhang ◽  
Bo Wang ◽  
Peizhuo Zhai ◽  
...  

The influence of heat and droplet transfer into weld pool dynamic behavior and weld metal microstructure in double-pulsed gas metal arc welding (DP-GMAW) was investigated by the self-designed high-speed welding photography system. The heat input, the arc pressure, the droplet momentum and impingement pressure were measured and calculated. It was found that the arc pressure is far less than the droplet impingement pressure. The heat input and droplet impingement pressure per unit time acting on weld pool were proportional to the current pulse frequency, which fluctuated with thermal pulse. The size and oscillation amplitude of the weld pool had noticeable periodic changes synchronized with the process of heat input and droplet impingement. Compared to the microstructure of pulsed gas metal arc welding (P-GMAW) weld metal, that of DP-GMAW weld metal was significantly refined. High oscillation amplitude assisted the enhancement of weld pool convection, which leads to more constitutional supercooling. The heat input and shear force during the peak of thermal pulse causing dendrite fragmentation which provided sufficient crystal nucleus for the growth of equiaxed grains and the possibility of grain refinement. The effects of current parameters on welding behavior and weld metal grain size are investigated for further understanding of DP-GMAW.

Author(s):  
J. Hu ◽  
H. L. Tsai

This article analyzes the dynamic process of groove filling and the resulting weld pool fluid flow in gas metal arc welding of thick metals with V-groove. Filler droplets carrying mass, momentum, thermal energy, and sulfur species are periodically impinged onto the workpiece. The complex transport phenomena in the weld pool, caused by the combined effect of droplet impingement, gravity, electromagnetic force, surface tension, and plasma arc pressure, were investigated to determine the transient weld pool shape and distributions of velocity, temperature, and sulfur species in the weld pool. It was found that the groove provides a channel which can smooth the flow in the weld pool, leading to poor mixing between the filler metal and the base metal, as compared to the case without a groove.


Author(s):  
J. Hu ◽  
H. Guo ◽  
H. L. Tsai

This article studies the transient weld pool dynamics under the periodical impingement of filler droplets that carry mass, momentum, thermal energy, and species in a moving 3D gas metal arc welding. The complicated transport phenomena in the weld pool are caused by the combined effect of droplet impingement, gravity, electromagnetic force, plasma arc force, and surface tension force (Marangoni effect). The weld pool shape and the distributions of temperature, velocity, and species in the weld pool are calculated as a function of time. The phenomena of “open and close-up” for a crater in the weld pool and the corresponding weld pool dynamics are analyzed. The commonly observed ripples at the surface of a solidified weld bead are, for the first time, predicted by the present model. Detailed mechanisms leading to the formation of ripples are discussed.


Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3096
Author(s):  
Habib Hamed Zargari ◽  
Kazuhiro Ito ◽  
Tsuyoshi Miwa ◽  
Pradeep Kumar Parchuri ◽  
Hajime Yamamoto ◽  
...  

Tandem-pulsed gas metal arc welding (TP-GMAW) simultaneously uses two wire-electrodes to enhance the material deposition rate, leading to the generation of a finger-shaped penetration as one of the arcs penetrates deeper than the other. On the other hand, workpiece vibration is one of the techniques used to control the microstructure of weld metal and a heat-affected zone. It is incidentally found that a specific vibration condition changes the finger-shaped penetration into pan-bottom shaped penetration in the TP-GMAW even though the vibration energy is much lower than the arc energy. Microstructure observation and elemental analysis are carried out for the welds fabricated without vibration and with three kinds of vibration modes, namely sine, random, and shock. The specific sine-mode vibration exhibits pan-bottom. The other modes of vibration in the same welding conditions exhibited invariable finger-shaped penetration. The Si atoms as a tracer distribute uniformly in the sine-mode. However, Si atoms segregate at the bottom of the finger-shaped weld metal with the random-mode and shock-mode workpiece vibrations. The weld pool shape change is prominent at a specific frequency. A resonance phenomenon between the droplet flow pattern and the molten material flow in the weld pool is likely to play a vital role in the change.


Author(s):  
Y. Wang ◽  
H. L. Tsai ◽  
S. P. Marin ◽  
P. C. Wang

This paper extends a mathematical model and numerical techniques previously developed for simulating stationary 2-D gas metal arc welding (GMAW), to moving 3-D GMAW. The filler droplets carrying mass, momentum, thermal energy, and species periodically impinge onto the weld pool, while moving at a certain speed in the welding direction. The complicated transport phenomena in the weld pool are caused by the combined effect of droplet impingement, gravity, electromagnetic force, plasma arc force, and surface tension force (Marangoni effect). The weld pool shape and the distributions of temperature, species, and velocity in the weld pool are calculated as functions of time. For the first time, the phenomena of “open and close-up” for a crater and the formation of ripples at the surface of a solidified weld bead are predicted by mathematical modeling. Under the welding conditions used in the present study, detailed mechanisms leading to the formation of ripples are discussed.


2013 ◽  
Vol 339 ◽  
pp. 700-705 ◽  
Author(s):  
Victor Lopez ◽  
Arturo Reyes ◽  
Patricia Zambrano

The effect of heat input on the transformation of retained austenite steels transformation induced plasticity (TRIP) was investigated in the heat affected zone (HAZ) of the Gas Metal Arc Welding GMAW process. The determination of retained austenite of the HAZ is important in optimizing the welding parameters when welding TRIP steels, because this will greatly influence the mechanical properties of the welding joint due to the transformation of residual austenite into martensite due to work hardening. Coupons were welded with high and low heat input for investigating the austenite transformation of the base metal due to heat applied by the welding process and was evaluated by optical microscopy and the method of X-Ray Diffraction (XRD). Data analyzed shows that the volume fraction of retained austenite in the HAZ increases with the heat input applied by the welding process, being greater as the heat input increase and decrease the cooling rate, this due to variation in the travel speed of the weld path.


2018 ◽  
Vol 15 (6) ◽  
pp. 172988141881620
Author(s):  
Reza Ebrahimpour ◽  
Rasul Fesharakifard ◽  
Seyed Mehdi Rezaei

Welding is one of the most common method of connecting parts. Welding methods and processes are very diverse. Welding can be of fusion or solid state types. Arc welding, which is classified as fusion method, is the most widespread method of welding, and it involves many processes. In gas metal arc welding or metal inert gas–metal active gas, the protection of the molten weld pool is carried out by a shielding gas and the filler metal is in the form of wire which is automatically fed to the molten weld pool. As a semi-metallic arc process, the gas metal arc welding is a very good process for robotic welding. In this article, to conduct the metal active gas welding torch, an auxiliary ball screw servomechanism is proposed to move under a welder robot to track the welded seam. This servomechanism acts as a moving fixture and operates separately from the robot. At last, a decentralized control method based on adaptive sliding mode is designed and implemented on the fixture to provide the desired motion. Experimental results demonstrate an appropriate accuracy of seam tracking and error compensation by the proposed method.


Sign in / Sign up

Export Citation Format

Share Document