scholarly journals Non-Scanning Three-Dimensional Imaging System with a Single-Pixel Detector: Simulation and Experimental Study

2020 ◽  
Vol 10 (9) ◽  
pp. 3100
Author(s):  
Guang Shi ◽  
Leijue Zheng ◽  
Wen Wang ◽  
Keqing Lu

Existing scanning laser three-dimensional (3D) imaging technology has slow measurement speed. In addition, the measurement accuracy of non-scanning laser 3D imaging technology based on area array detectors is limited by the resolution and response frequency of area array detectors. As a result, applications of laser 3D imaging technology are limited. This paper completed simulations and experiments of a non-scanning 3D imaging system with a single-pixel detector. The single-pixel detector can be used to achieve 3D imaging of a target by compressed sensing to overcome the shortcomings of the existing laser 3D imaging technology. First, the effects of different sampling rates, sparse transform bases, measurement matrices, and reconstruction algorithms on the measurement results were compared through simulation experiments. Second, a non-scanning 3D imaging experimental platform was designed and constructed. Finally, an experiment was performed to compare the effects of different sampling rates and reconstruction algorithms on the reconstruction effect of 3D imaging to obtain a 3D image with a resolution of 8 × 8. The simulation results show that the reconstruction effect of the Hadamard measurement matrix and the minimum total variation reconstruction algorithm performed well.

2013 ◽  
Vol 20 (5) ◽  
pp. 793-800 ◽  
Author(s):  
Akihisa Takeuchi ◽  
Kentaro Uesugi ◽  
Yoshio Suzuki

A three-dimensional (3D) X-ray tomographic micro-imaging system has been developed. The optical system is based on a scanning–imaging X-ray microscope (SIXM) optics, which is a hybrid system consisting of a scanning microscope optics with a one-dimensional (1D) focusing (line-focusing) device and an imaging microscope optics with a 1D objective. In the SIXM system, each 1D dataset of a two-dimensional (2D) image is recorded independently. An object is illuminated with a line-focused beam. Positional information of the region illuminated by the line-focused beam is recorded with the 1D imaging microscope optics as line-profile data. By scanning the object with the line focus, 2D image data are obtained. In the same manner as for a scanning microscope optics with a multi-pixel detector, imaging modes such as phase contrast and absorption contrast can be arbitrarily configured after the image data acquisition. By combining a tomographic scan method and the SIXM system, quantitative 3D imaging is performed. Results of a feasibility study of the SIXM for 3D imaging are shown.


Author(s):  
S. Kolokytha ◽  
R. Speller ◽  
S. Robson

This study describes a cost-effective check-in baggage screening system, based on "on-belt tomosynthesis" (ObT) and close-range photogrammetry, that is designed to address the limitations of the most common system used, conventional projection radiography. The latter's limitations can lead to loss of information and an increase in baggage handling time, as baggage is manually searched or screened with more advanced systems. This project proposes a system that overcomes such limitations creating a cost-effective automated pseudo-3D imaging system, by combining x-ray and optical imaging to form digital tomograms. Tomographic reconstruction requires a knowledge of the change in geometry between multiple x-ray views of a common object. This is uniquely achieved using a close range photogrammetric system based on a small network of web-cameras. This paper presents the recent developments of the ObT system and describes recent findings of the photogrammetric system implementation. Based on these positive results, future work on the advancement of the ObT system as a cost-effective pseudo-3D imaging of hold baggage for airport security is proposed.


Sensors ◽  
2020 ◽  
Vol 20 (24) ◽  
pp. 7306
Author(s):  
Yan Zhang ◽  
Baoping Wang ◽  
Yang Fang ◽  
Zuxun Song

Limited by the Shannon–Nyquist sampling law, the number of antenna elements and echo signal data of the traditional microwave three-dimensional (3D) imaging system are extremely high. Compressed sensing imaging methods based on sparse representation of target scene can reduce the data sampling rate, but the dictionary matrix of these methods takes a lot of memory, and the imaging has poor quality for continuously distributed targets. For the above problems, a microwave 3D imaging method based on optimal wave spectrum reconstruction and optimization with target reflectance gradient is proposed in this paper. Based on the analysis of the spatial distribution characteristics of the target echo in the frequency domain, this method constructs an orthogonal projection reconstruction model for the wavefront to realize the optimal reconstruction of the target wave spectrum. Then, the inverse Fourier transform of the optimal target wave spectrum is optimized according to the law of the target reflectance gradient distribution. The proposed method has the advantages of less memory space and less computation time. What is more, the method has a better imaging quality for the continuously distributed target. The computer simulation experiment and microwave anechoic chamber measurement experiment verify the effectiveness of the proposed method.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Yun Chen ◽  
Ya-Hui Tsai ◽  
Yuan-An Liu ◽  
Shih-Hua Lee ◽  
Sheng-Hong Tseng ◽  
...  

Two-dimensional (2D) histopathology is the standard analytical method for intestinal biopsied tissues; however, the role of 3-dimensional (3D) imaging system in the analysis of the intestinal tissues is unclear. The 3D structure of the crypt organoids from the intestinal stem cell culture and intestinal tissues from the donors and recipients after intestinal transplantation was observed using a 3D imaging system and compared with 2D histopathology and immunohistochemistry. The crypt organoids and intestinal tissues showed well-defined 3D structures. The 3D images of the intestinal tissues with acute rejection revealed absence of villi and few crypts, which were consistent with the histopathological features. In the intestinal transplant for megacystis microcolon intestinal hypoperistalsis syndrome, the donor’s intestinal tissues had well-developed nerve networks and interstitial cells of Cajal (ICCs) in the muscle layer, while the recipient’s intestinal tissues had distorted nerve network and the ICCs were few and sparsely distributed, relative to those of the donor. The 3D images showed a clear spatial relationship between the microstructures of the small bowel and the features of graft rejection. In conclusion, integration of the 3D imaging and 2D histopathology provided a global view of the intestinal tissues from the transplant patients.


2003 ◽  
Vol 40 (5) ◽  
pp. 523-529 ◽  
Author(s):  
A. Ayoub ◽  
A. Garrahy ◽  
C. Hood ◽  
J. White ◽  
M. Bock ◽  
...  

Objective The aim of this study was to assess the accuracy of a newly developed three-dimensional (3D) imaging system in recording facial morphology. Methods Twenty-one infants with cleft lip each had a full-face alginate impression taken at the time of primary lip repair, and a stone cast was constructed from each impression. Five anthropometric points were marked on each cast. Each cast was digitized, and the 3D co-ordinates of the five points were obtained using a co-ordinate measuring machine (CMM, Ferranti) of documented accuracy (9.53 μm). Each cast was scanned in four positions using a computerized stereophotogrammetry (C3D) system. The five points were located on the 3D images, and their 3D co-ordinates were extracted by three operators. The co-ordinate systems produced by C3D were aligned, via translation and rotation, to match the CMM co-ordinate system using partial ordinary procrustes analysis. The displacements of the adjusted C3D co-ordinates from the reference co-ordinates were then measured. Three different types of errors were identified: operator, system, and registration errors. Results Operator error was within 0.2 mm of the true co-ordinates of the landmarks. C3D was accurate within 0.4 mm. The average displacement of points over the 21 casts at four positions for the three operators was 0.79 mm (median 0.68). Conclusions The presented 3D imaging system is reliable in recording facial deformity and could be utilized in recording cleft deformities and measuring the changes following surgery


2020 ◽  
Vol 47 (1) ◽  
pp. 17-24
Author(s):  
Kyunghwa Choi ◽  
Misun Kim ◽  
Koeun Lee ◽  
Okhyung Nam ◽  
Hyo-seol Lee ◽  
...  

The purpose of this study was to evaluate the accuracy and precision of the three-dimensional (3D) imaging system of children’s facial soft tissue by comparing linear measurements. The subjects of the study were 15 children between the ages of 7 and 12. Twenty-three landmarks were pointed on the face of each subject and 16 linear measurements were directly obtained 2 times using an electronic caliper. Two sets of 3D facial images were made by the 3D scanner. The same 16 measurements were obtained on each 3D image. In the accuracy test, the total average difference was 0.9 mm. The precision of 3D photogrammetry was almost equivalent to that of direct measurement. Thus, 3D photogrammetry by the 3D scanner in children had sufficient accuracy and precision to be used in clinical setting. However, the 3D imaging system requires the subject’s compliance for exact images. If the clinicians provide specific instructions to children while obtaining 3D images, the 3D device is useful for investigating children’s facial growth and development. Also the device can be a valuable tool for evaluating the results of orthodontic and orthopedic treatments.


2021 ◽  
Author(s):  
Wu Daixuan ◽  
Luo Jiawei ◽  
Huang Guoqiang ◽  
Yuanhua Feng ◽  
Feng Xiaohua ◽  
...  

Abstract Single-pixel holography (SPH) is capable of generating holographic images with rich spatial information by employing only a single-pixel detector. Thanks to the relatively low dark-noise production, high sensitivity, large bandwidth, and cheap price of single-pixel detectors in comparison to pixel-array detectors, SPH is becoming an attractive imaging modality at wavelengths where pixel-array detectors are not available or prohibitively expensive. Moreover, SPH is particularly advantageous when imaging through scattering media or in scarce illumination with compressive sensing. In the current practice of SPH, the throughput of the system is mainly limited by the phase-encoded illumination and the ways to realize phase stepping. In this work, we developed a high-through single-pixel compressive holography, achieving a space-bandwidth-time product (SBP-T) of 41,667 pixels/s. This result indicates that by using a single-pixel detector, information of holographic images containing up to 65,536 pixels can be collected within only 3 seconds. The high-throughput was realized by enabling phase stepping naturally in time and abandoning the need for phase-encoded illumination. We further show that compressive sensing can be conveniently adapted to significantly reduce the acquisition time. Besides being high throughput, we also show that this holographic system is scalable to provide either a large field of view (~83 mm2) or a high resolution (5.8 μm × 4.3 μm). In particular, high-resolution holographic images of a piece of rat tail were presented, exhibiting rich information of mussel, cortical bone, and cancellous bone. Given that microscopic images of biological tissue has rarely been explored in the current practice of SPH, we anticipate the developed high-throughput SPH is promising to nourish the development of multi-spectrum imaging by providing high-quality holographic images for biological tissues.


Sign in / Sign up

Export Citation Format

Share Document