scholarly journals Segmentation of Intracranial Hemorrhage Using Semi-Supervised Multi-Task Attention-Based U-Net

2020 ◽  
Vol 10 (9) ◽  
pp. 3297 ◽  
Author(s):  
Justin L. Wang ◽  
Hassan Farooq ◽  
Hanqi Zhuang ◽  
Ali K. Ibrahim

Intracranial Hemorrhage (ICH) has high rates of mortality, and risk factors associated with it are sometimes nearly impossible to avoid. Previous techniques to detect ICH using machine learning have shown some promise. However, due to a limited number of labeled medical images available, which often causes poor model accuracy in terms of the Dice coefficient, there is much to be improved. In this paper, we propose a modified u-net and curriculum learning strategy using a multi-task semi-supervised attention-based model, initially introduced by Chen et al., to segment ICH sub-groups from CT images. Using a modified inverse-sigmoid-based curriculum learning training strategy, we were able to stabilize Chen’s algorithm experimentally. This semi-supervised model produced higher Dice coefficient values in comparison to a supervised counterpart, regardless of the amount of labeled data used to train the model. Specifically, when training with 80% of the ground truth data, our semi-supervised model produced a Dice coefficient of 0.67, which was higher than 0.61, obtained by a comparable supervised model. This result also surpassed by a greater margin the one obtained by using the out-of-the-box u-net by Hssayeni et al.

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Benjamin Zahneisen ◽  
Matus Straka ◽  
Shalini Bammer ◽  
Greg Albers ◽  
Roland Bammer

Introduction: Ruling out hemorrhage (stroke or traumatic) prior to administration of thrombolytics is critical for Code Strokes. A triage software that identifies hemorrhages on head CTs and alerts radiologists would help to streamline patient care and increase diagnostic confidence and patient safety. ML approach: We trained a deep convolutional network with a hybrid 3D/2D architecture on unenhanced head CTs of 805 patients. Our training dataset comprised 348 positive hemorrhage cases (IPH=245, SAH=67, Sub/Epi-dural=70, IVH=83) (128 female) and 457 normal controls (217 female). Lesion outlines were drawn by experts and stored as binary masks that were used as ground truth data during the training phase (random 80/20 train/test split). Diagnostic sensitivity and specificity were defined on a per patient study level, i.e. a single, binary decision for presence/absence of a hemorrhage on a patient’s CT scan. Final validation was performed in 380 patients (167 positive). Tool: The hemorrhage detection module was prototyped in Python/Keras. It runs on a local LINUX server (4 CPUs, no GPUs) and is embedded in a larger image processing platform dedicated to stroke. Results: Processing time for a standard whole brain CT study (3-5mm slices) was around 2min. Upon completion, an instant notification (by email and/or mobile app) was sent to users to alert them about the suspected presence of a hemorrhage. Relative to neuroradiologist gold standard reads the algorithm’s sensitivity and specificity is 90.4% and 92.5% (95% CI: 85%-94% for both). Detection of acute intracranial hemorrhage can be automatized by deploying deep learning. It yielded very high sensitivity/specificity when compared to gold standard reads by a neuroradiologist. Volumes as small as 0.5mL could be detected reliably in the test dataset. The software can be deployed in busy practices to prioritize worklists and alert health care professionals to speed up therapeutic decision processes and interventions.


2016 ◽  
Vol 91 (12) ◽  
pp. E499-E501 ◽  
Author(s):  
Sara Melboucy‐Belkhir ◽  
Mehdi Khellaf ◽  
Alexandre Augier ◽  
Marouane Boubaya ◽  
Vincent Levy ◽  
...  

2005 ◽  
Vol 17 (11) ◽  
pp. 2482-2507 ◽  
Author(s):  
Qi Zhao ◽  
David J. Miller

The goal of semisupervised clustering/mixture modeling is to learn the underlying groups comprising a given data set when there is also some form of instance-level supervision available, usually in the form of labels or pairwise sample constraints. Most prior work with constraints assumes the number of classes is known, with each learned cluster assumed to be a class and, hence, subject to the given class constraints. When the number of classes is unknown or when the one-cluster-per-class assumption is not valid, the use of constraints may actually be deleterious to learning the ground-truth data groups. We address this by (1) allowing allocation of multiple mixture components to individual classes and (2) estimating both the number of components and the number of classes. We also address new class discovery, with components void of constraints treated as putative unknown classes. For both real-world and synthetic data, our method is shown to accurately estimate the number of classes and to give favorable comparison with the recent approach of Shental, Bar-Hillel, Hertz, and Weinshall (2003).


2018 ◽  
Vol 1 ◽  
pp. 1-6
Author(s):  
Ekaterina Chuprikova ◽  
Lukas Liebel ◽  
Liqiu Meng

This article demonstrates the ability of the Bayesian Network analysis for the recognition of uncertainty patterns associated with the fusion of various land cover data sets including GlobeLand30, CORINE (CLC2006, Germany) and land cover data derived from Volunteered Geographic Information (VGI) such as Open Street Map (OSM). The results of recognition are expressed as probability and uncertainty maps which can be regarded as a by-product of the GlobeLand30 data. The uncertainty information may guide the quality improvement of GlobeLand30 by involving the ground truth data, information with superior quality, the know-how of experts and the crowd intelligence. Such an endeavor aims to pave a way towards a seamless validation of global land cover data on the one hand and a targeted knowledge discovery in areas with higher uncertainty values on the other hand.


2014 ◽  
Author(s):  
Ariel M. Barber ◽  
Alexandra Crouch ◽  
Stephen Campbell

Sign in / Sign up

Export Citation Format

Share Document