Abstract 20: Deep Learning-Based Automated Intracranial Hemorrhage Detection and Notification

Stroke ◽  
2020 ◽  
Vol 51 (Suppl_1) ◽  
Author(s):  
Benjamin Zahneisen ◽  
Matus Straka ◽  
Shalini Bammer ◽  
Greg Albers ◽  
Roland Bammer

Introduction: Ruling out hemorrhage (stroke or traumatic) prior to administration of thrombolytics is critical for Code Strokes. A triage software that identifies hemorrhages on head CTs and alerts radiologists would help to streamline patient care and increase diagnostic confidence and patient safety. ML approach: We trained a deep convolutional network with a hybrid 3D/2D architecture on unenhanced head CTs of 805 patients. Our training dataset comprised 348 positive hemorrhage cases (IPH=245, SAH=67, Sub/Epi-dural=70, IVH=83) (128 female) and 457 normal controls (217 female). Lesion outlines were drawn by experts and stored as binary masks that were used as ground truth data during the training phase (random 80/20 train/test split). Diagnostic sensitivity and specificity were defined on a per patient study level, i.e. a single, binary decision for presence/absence of a hemorrhage on a patient’s CT scan. Final validation was performed in 380 patients (167 positive). Tool: The hemorrhage detection module was prototyped in Python/Keras. It runs on a local LINUX server (4 CPUs, no GPUs) and is embedded in a larger image processing platform dedicated to stroke. Results: Processing time for a standard whole brain CT study (3-5mm slices) was around 2min. Upon completion, an instant notification (by email and/or mobile app) was sent to users to alert them about the suspected presence of a hemorrhage. Relative to neuroradiologist gold standard reads the algorithm’s sensitivity and specificity is 90.4% and 92.5% (95% CI: 85%-94% for both). Detection of acute intracranial hemorrhage can be automatized by deploying deep learning. It yielded very high sensitivity/specificity when compared to gold standard reads by a neuroradiologist. Volumes as small as 0.5mL could be detected reliably in the test dataset. The software can be deployed in busy practices to prioritize worklists and alert health care professionals to speed up therapeutic decision processes and interventions.

2020 ◽  
Vol 36 (12) ◽  
pp. 3863-3870
Author(s):  
Mischa Schwendy ◽  
Ronald E Unger ◽  
Sapun H Parekh

Abstract Motivation Deep learning use for quantitative image analysis is exponentially increasing. However, training accurate, widely deployable deep learning algorithms requires a plethora of annotated (ground truth) data. Image collections must contain not only thousands of images to provide sufficient example objects (i.e. cells), but also contain an adequate degree of image heterogeneity. Results We present a new dataset, EVICAN—Expert visual cell annotation, comprising partially annotated grayscale images of 30 different cell lines from multiple microscopes, contrast mechanisms and magnifications that is readily usable as training data for computer vision applications. With 4600 images and ∼26 000 segmented cells, our collection offers an unparalleled heterogeneous training dataset for cell biology deep learning application development. Availability and implementation The dataset is freely available (https://edmond.mpdl.mpg.de/imeji/collection/l45s16atmi6Aa4sI?q=). Using a Mask R-CNN implementation, we demonstrate automated segmentation of cells and nuclei from brightfield images with a mean average precision of 61.6 % at a Jaccard Index above 0.5.


Author(s):  
T. Wu ◽  
B. Vallet ◽  
M. Pierrot-Deseilligny ◽  
E. Rupnik

Abstract. Stereo dense matching is a fundamental task for 3D scene reconstruction. Recently, deep learning based methods have proven effective on some benchmark datasets, for example Middlebury and KITTI stereo. However, it is not easy to find a training dataset for aerial photogrammetry. Generating ground truth data for real scenes is a challenging task. In the photogrammetry community, many evaluation methods use digital surface models (DSM) to generate the ground truth disparity for the stereo pairs, but in this case interpolation may bring errors in the estimated disparity. In this paper, we publish a stereo dense matching dataset based on ISPRS Vaihingen dataset, and use it to evaluate some traditional and deep learning based methods. The evaluation shows that learning-based methods outperform traditional methods significantly when the fine tuning is done on a similar landscape. The benchmark also investigates the impact of the base to height ratio on the performance of the evaluated methods. The dataset can be found in https://github.com/whuwuteng/benchmark_ISPRS2021.


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 212
Author(s):  
Youssef Skandarani ◽  
Pierre-Marc Jodoin ◽  
Alain Lalande

Deep learning methods are the de facto solutions to a multitude of medical image analysis tasks. Cardiac MRI segmentation is one such application, which, like many others, requires a large number of annotated data so that a trained network can generalize well. Unfortunately, the process of having a large number of manually curated images by medical experts is both slow and utterly expensive. In this paper, we set out to explore whether expert knowledge is a strict requirement for the creation of annotated data sets on which machine learning can successfully be trained. To do so, we gauged the performance of three segmentation models, namely U-Net, Attention U-Net, and ENet, trained with different loss functions on expert and non-expert ground truth for cardiac cine–MRI segmentation. Evaluation was done with classic segmentation metrics (Dice index and Hausdorff distance) as well as clinical measurements, such as the ventricular ejection fractions and the myocardial mass. The results reveal that generalization performances of a segmentation neural network trained on non-expert ground truth data is, to all practical purposes, as good as that trained on expert ground truth data, particularly when the non-expert receives a decent level of training, highlighting an opportunity for the efficient and cost-effective creation of annotations for cardiac data sets.


2018 ◽  
Vol 10 (11) ◽  
pp. 1827 ◽  
Author(s):  
Ahram Song ◽  
Jaewan Choi ◽  
Youkyung Han ◽  
Yongil Kim

Hyperspectral change detection (CD) can be effectively performed using deep-learning networks. Although these approaches require qualified training samples, it is difficult to obtain ground-truth data in the real world. Preserving spatial information during training is difficult due to structural limitations. To solve such problems, our study proposed a novel CD method for hyperspectral images (HSIs), including sample generation and a deep-learning network, called the recurrent three-dimensional (3D) fully convolutional network (Re3FCN), which merged the advantages of a 3D fully convolutional network (FCN) and a convolutional long short-term memory (ConvLSTM). Principal component analysis (PCA) and the spectral correlation angle (SCA) were used to generate training samples with high probabilities of being changed or unchanged. The strategy assisted in training fewer samples of representative feature expression. The Re3FCN was mainly comprised of spectral–spatial and temporal modules. Particularly, a spectral–spatial module with a 3D convolutional layer extracts the spectral–spatial features from the HSIs simultaneously, whilst a temporal module with ConvLSTM records and analyzes the multi-temporal HSI change information. The study first proposed a simple and effective method to generate samples for network training. This method can be applied effectively to cases with no training samples. Re3FCN can perform end-to-end detection for binary and multiple changes. Moreover, Re3FCN can receive multi-temporal HSIs directly as input without learning the characteristics of multiple changes. Finally, the network could extract joint spectral–spatial–temporal features and it preserved the spatial structure during the learning process through the fully convolutional structure. This study was the first to use a 3D FCN and a ConvLSTM for the remote-sensing CD. To demonstrate the effectiveness of the proposed CD method, we performed binary and multi-class CD experiments. Results revealed that the Re3FCN outperformed the other conventional methods, such as change vector analysis, iteratively reweighted multivariate alteration detection, PCA-SCA, FCN, and the combination of 2D convolutional layers-fully connected LSTM.


GEOMATICA ◽  
2019 ◽  
Vol 73 (2) ◽  
pp. 29-44
Author(s):  
Won Mo Jung ◽  
Faizaan Naveed ◽  
Baoxin Hu ◽  
Jianguo Wang ◽  
Ningyuan Li

With the advance of deep learning networks, their applications in the assessment of pavement conditions are gaining more attention. A convolutional neural network (CNN) is the most commonly used network in image classification. In terms of pavement assessment, most existing CNNs are designed to only distinguish between cracks and non-cracks. Few networks classify cracks in different levels of severity. Information on the severity of pavement cracks is critical for pavement repair services. In this study, the state-of-the-art CNN used in the detection of pavement cracks was improved to localize the cracks and identify their distress levels based on three categories (low, medium, and high). In addition, a fully convolutional network (FCN) was, for the first time, utilized in the detection of pavement cracks. These designed architectures were validated using the data acquired on four highways in Ontario, Canada, and compared with the ground truth that was provided by the Ministry of Transportation of Ontario (MTO). The results showed that with the improved CNN, the prediction precision on a series of test image patches were 72.9%, 73.9%, and 73.1% for cracks with the severity levels of low, medium, and high, respectively. The precision for the FCN was tested on whole pavement images, resulting in 62.8%, 63.3%, and 66.4%, respectively, for cracks with the severity levels of low, medium, and high. It is worth mentioning that the ground truth contained some uncertainties, which partially contributed to the relatively low precision.


Author(s):  
Johannes Thomsen ◽  
Magnus B. Sletfjerding ◽  
Stefano Stella ◽  
Bijoya Paul ◽  
Simon Bo Jensen ◽  
...  

AbstractSingle molecule Förster Resonance energy transfer (smFRET) is a mature and adaptable method for studying the structure of biomolecules and integrating their dynamics into structural biology. The development of high throughput methodologies and the growth of commercial instrumentation have outpaced the development of rapid, standardized, and fully automated methodologies to objectively analyze the wealth of produced data. Here we present DeepFRET, an automated standalone solution based on deep learning, where the only crucial human intervention in transiting from raw microscope images to histogram of biomolecule behavior, is a user-adjustable quality threshold. Integrating all standard features of smFRET analysis, DeepFRET will consequently output common kinetic information metrics for biomolecules. We validated the utility of DeepFRET by performing quantitative analysis on simulated, ground truth, data and real smFRET data. The accuracy of classification by DeepFRET outperformed human operators and current commonly used hard threshold and reached >95% precision accuracy only requiring a fraction of the time (<1% as compared to human operators) on ground truth data. Its flawless and rapid operation on real data demonstrates its wide applicability. This level of classification was achieved without any preprocessing or parameter setting by human operators, demonstrating DeepFRET’s capacity to objectively quantify biomolecular dynamics. The provided a standalone executable based on open source code capitalises on the widespread adaptation of machine learning and may contribute to the effort of benchmarking smFRET for structural biology insights.


2020 ◽  
Vol 10 (22) ◽  
pp. 8285
Author(s):  
Francesco Martino ◽  
Domenico D. Bloisi ◽  
Andrea Pennisi ◽  
Mulham Fawakherji ◽  
Gennaro Ilardi ◽  
...  

Oral squamous cell carcinoma is the most common oral cancer. In this paper, we present a performance analysis of four different deep learning-based pixel-wise methods for lesion segmentation on oral carcinoma images. Two diverse image datasets, one for training and another one for testing, are used to generate and evaluate the models used for segmenting the images, thus allowing to assess the generalization capability of the considered deep network architectures. An important contribution of this work is the creation of the Oral Cancer Annotated (ORCA) dataset, containing ground-truth data derived from the well-known Cancer Genome Atlas (TCGA) dataset.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6062
Author(s):  
Ziran Ye ◽  
Bo Si ◽  
Yue Lin ◽  
Qiming Zheng ◽  
Ran Zhou ◽  
...  

New ongoing rural construction has resulted in an extensive mixture of new settlements with old ones in the rural areas of China. Understanding the spatial characteristic of these rural settlements is of crucial importance as it provides essential information for land management and decision-making. Despite a great advance in High Spatial Resolution (HSR) satellite images and deep learning techniques, it remains a challenging task for mapping rural settlements accurately because of their irregular morphology and distribution pattern. In this study, we proposed a novel framework to map rural settlements by leveraging the merits of Gaofen-2 HSR images and representation learning of deep learning. We combined a dilated residual convolutional network (Dilated-ResNet) and a multi-scale context subnetwork into an end-to-end architecture in order to learn high resolution feature representations from HSR images and to aggregate and refine the multi-scale features extracted by the aforementioned network. Our experiment in Tongxiang city showed that the proposed framework effectively mapped and discriminated rural settlements with an overall accuracy of 98% and Kappa coefficient of 85%, achieving comparable and improved performance compared to other existing methods. Our results bring tangible benefits to support other convolutional neural network (CNN)-based methods in accurate and timely rural settlement mapping, particularly when up-to-date ground truth is absent. The proposed method does not only offer an effective way to extract rural settlement from HSR images but open a new opportunity to obtain spatial-explicit understanding of rural settlements.


2020 ◽  
Vol 27 (8) ◽  
pp. 1316-1320 ◽  
Author(s):  
Amit Singh ◽  
Albert Haque ◽  
Alexandre Alahi ◽  
Serena Yeung ◽  
Michelle Guo ◽  
...  

Abstract Objective Hand hygiene is essential for preventing hospital-acquired infections but is difficult to accurately track. The gold-standard (human auditors) is insufficient for assessing true overall compliance. Computer vision technology has the ability to perform more accurate appraisals. Our primary objective was to evaluate if a computer vision algorithm could accurately observe hand hygiene dispenser use in images captured by depth sensors. Materials and Methods Sixteen depth sensors were installed on one hospital unit. Images were collected continuously from March to August 2017. Utilizing a convolutional neural network, a machine learning algorithm was trained to detect hand hygiene dispenser use in the images. The algorithm’s accuracy was then compared with simultaneous in-person observations of hand hygiene dispenser usage. Concordance rate between human observation and algorithm’s assessment was calculated. Ground truth was established by blinded annotation of the entire image set. Sensitivity and specificity were calculated for both human and machine-level observation. Results A concordance rate of 96.8% was observed between human and algorithm (kappa = 0.85). Concordance among the 3 independent auditors to establish ground truth was 95.4% (Fleiss’s kappa = 0.87). Sensitivity and specificity of the machine learning algorithm were 92.1% and 98.3%, respectively. Human observations showed sensitivity and specificity of 85.2% and 99.4%, respectively. Conclusions A computer vision algorithm was equivalent to human observation in detecting hand hygiene dispenser use. Computer vision monitoring has the potential to provide a more complete appraisal of hand hygiene activity in hospitals than the current gold-standard given its ability for continuous coverage of a unit in space and time.


Author(s):  
Yang Zhang ◽  
Siwa Chan ◽  
Jeon-Hor Chen ◽  
Kai-Ting Chang ◽  
Chin-Yao Lin ◽  
...  

AbstractTo develop a U-net deep learning method for breast tissue segmentation on fat-sat T1-weighted (T1W) MRI using transfer learning (TL) from a model developed for non-fat-sat images. The training dataset (N = 126) was imaged on a 1.5 T MR scanner, and the independent testing dataset (N = 40) was imaged on a 3 T scanner, both using fat-sat T1W pulse sequence. Pre-contrast images acquired in the dynamic-contrast-enhanced (DCE) MRI sequence were used for analysis. All patients had unilateral cancer, and the segmentation was performed using the contralateral normal breast. The ground truth of breast and fibroglandular tissue (FGT) segmentation was generated using a template-based segmentation method with a clustering algorithm. The deep learning segmentation was performed using U-net models trained with and without TL, by using initial values of trainable parameters taken from the previous model for non-fat-sat images. The ground truth of each case was used to evaluate the segmentation performance of the U-net models by calculating the dice similarity coefficient (DSC) and the overall accuracy based on all pixels. Pearson’s correlation was used to evaluate the correlation of breast volume and FGT volume between the U-net prediction output and the ground truth. In the training dataset, the evaluation was performed using tenfold cross-validation, and the mean DSC with and without TL was 0.97 vs. 0.95 for breast and 0.86 vs. 0.80 for FGT. When the final model developed with and without TL from the training dataset was applied to the testing dataset, the mean DSC was 0.89 vs. 0.83 for breast and 0.81 vs. 0.81 for FGT, respectively. Application of TL not only improved the DSC, but also decreased the required training case number. Lastly, there was a high correlation (R2 > 0.90) for both the training and testing datasets between the U-net prediction output and ground truth for breast volume and FGT volume. U-net can be applied to perform breast tissue segmentation on fat-sat images, and TL is an efficient strategy to develop a specific model for each different dataset.


Sign in / Sign up

Export Citation Format

Share Document